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Motivation

▶ Goal: Relative role of long-run supply and short-run demand shocks in driving

business cycles

✱ Monetary authority faces policy trade-offs due to long-run supply-driven business cycles

✱ SVAR literature has conflicting conclusions about the causal effects of long-run supply shocks

✱ DSGE literature has conflicting conclusions about the normative and policy implications of
long-run supply shocks

▶ Literature: Identifies long-run productivity shocks
ete
=====⇒ business-cycle GDP fluctuations

▶ This Paper: Dissects GDP fluctuations to identify shocks that explain business-cycle
volatility of GDP

Identified business-cycle shocks
ete
=====⇒ long-run productivity fluctuations

Introduction Empirical Analysis Limited Information Estimation Challenges # 2



Motivation

▶ Goal: Relative role of long-run supply and short-run demand shocks in driving

business cycles

✱ Monetary authority faces policy trade-offs due to long-run supply-driven business cycles

✱ SVAR literature has conflicting conclusions about the causal effects of long-run supply shocks

✱ DSGE literature has conflicting conclusions about the normative and policy implications of
long-run supply shocks

▶ Literature: Identifies long-run productivity shocks
ete
=====⇒ business-cycle GDP fluctuations

▶ This Paper: Dissects GDP fluctuations to identify shocks that explain business-cycle
volatility of GDP

Identified business-cycle shocks
ete
=====⇒ long-run productivity fluctuations

Introduction Empirical Analysis Limited Information Estimation Challenges # 2



But why a new approach?

Allows for two categories of long-run productivity shocks. One causes business cycles
and the other doesn’t.
▶ Literature: Identifies long-run productivity shocks

ete
=====⇒ business-cycle GDP fluctuations

Q: Does an average aggregate long-run TFP shock drive business cycles?
✱ Two assumptions:

1. Long-run TFP shocks are exogenous

2. There exists only one category of long-run productivity shock

▶ This Paper: Identifies business-cycle shocks
ete
=====⇒ long-run productivity fluctuations

Q: Does there exist any subset of long-run TFP shocks that may drive business cycles?

✱ Relaxes assumption 2. Allows for two categories of long-run productivity shocks

✱ Assumption 1 holds. Avoids reverse causality
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Business Cycle Shocks

▶ ACD: Angeletos, Collard & Dellas (2020):

✱ Argue non-inflationary demand shocks drive business cycles. MBC

✱ Extract a shock that explains maximum business cycle volatility of real per capita GDP.

▶ Key Assumption: Business cycles have a dynamic factor structure and there’s one factor.
✱ In other words, single shock drives business cycles.
✱ MBC shock: 1st principal component

▶ I test this key assumption on the number of dynamic factors.

✱ There are two factors.
✱ Separate them using a hypothesis, some of these shocks have long-run implications

and some don’t.
✱ Based on empirical results, I interpret the two shocks as supply and demand shocks.
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Number of Dynamic Factors?

Figure Scree Plot

Eigenvalues for a spectral matrix of GDP at business cycle frequency band.
Horizontal axis: Total principal components or eigenvalues.

▶ This Paper: The MBC shock is a linear combination of supply and demand shocks
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Overview: Results

Using a novel SVAR identification strategy to dissect business cycle fluctuations:

▶ Yes, a significant fraction of long-run TFP shocks drive business cycles

▶ Identification of Dynamic Causal Effects
✱ Identify two business cycle shocks, a short-run and a long-run shock

✱ Further identified as a long-run supply shock and a short-run demand shock based
on conditional correlations of macro variables

✱ A second category of long-run shocks that don’t drive business cycles

▶ Identification of Model Parameters
✱ Theoretically argue non-business cycle fluctuations lead to biased parameters

of DSGE models estimated in a full information setting

✱ Significant normative & policy implications

✱ Solution: Estimation via IRF matching with the identified business cycle shocks
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Literature Review

▶ SVAR Identification (TFP Shocks):

Blanchard & Quah (1989); Gali (1999); Basu, Fernald & Kimball (2006);
Beaudry & Portier (2006); Barsky & Sims (2011); Francis et al. (2014); Barsky, Basu
& Lee (2014); Chahrour & Jurado (2018); Angeletos, Collard & Dellas (2020);
Kurmann & Sims (2022); Chahrour, Chugh & Potter (2022);

✱ Conflicting conclusions about the role of long-run TFP shocks
✱ Contribution: Relaxes the common assumption about one category of long-productivity shock

▶ Limited Information Estimation:

Rotemberg & Woodford (1997), Christiano, Eichenbaum & Evans (2005),
Barnichon & Mesters (2020), Lewis & Mertens (2023)

✱ Contribution: Argues for limited information estimation due to non-business cycle fluctuations
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Outline

1. Identification Setup

2. Results

3. Model Estimation Challenges

4. Application: Smets & Wouters (2007)
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Empirical Analysis
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Baseline VAR

▶ Data follows the benchmark VAR of ACD (2020):

✱ Quarterly U.S data: 1955Q1-2019Q4

✱ Macro Quantities: Unemployment, GDP, Hours, Invest. (inclusive of durables), Cons.

✱ Productivity: util-adjust TFP, NFB labor productivity;

✱ Nominal: Inflation (GDP Delator), Federal Fund Rate, Labor Share

✱ Bayesian VAR, 2 Lags

▶ Wold Representation:
Yt = D(L)Qϵt

where, ϵt are structural shocks.
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Identification BQ 1989

ϵ
′
t = [ ϵ

ong−rn
B,t ϵ

short−rn
B,t

︸ ︷︷ ︸

Business cycle shocks

ϵNB,t
︸ ︷︷ ︸

Non-Business Cycle shocks

]

▶ B: Linear combination of the VAR residuals that explain significant volatility of GDP
at the business-cycle frequencies, 6-32 quarters

▶ ϵ
short−rn
B,t : Business cycle shocks that don’t contribute to long-run volatility of GDP

▶ Following ACD (2020), long-run refers to fluctuations of periodicity >20 years

▶ ϵ
ong−rn
B,t : Residual business cycle shocks

▶ Structural assumptions consistent with the literature.
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Identification Setup Definition BQ 1989 HQF

q
∗
r , q

∗
sr ≡ rg mx

qr ,qsr
qr
′D
�

GDP,
2π

32
,
2π

6

�

qr + qsr
′D
�
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2π

32
,
2π

6

�

qsr

− qsr
′D
�

GDP,
2π

∞
,
2π

80

�

qsr

s.t. q′rqr = 1, q
′
srqsr = 1, q

′
rqsr = 0

▶ Identify two orthogonal shocks q∗r and q
∗
sr

▶ Both together explain the maximum volatility of real per capita GDP at business cycle
frequency

▶ Penalize q
∗
sr for explaining long-run volatility of GDP

▶ Results robust to long-run restrictions via labor productivity, TFP, Consumption

▶ Key: Not rewarding q∗r for explaining long-run TFP movements
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Business Cycle Co-movement

▶ Volatility contribution at business-cycle frequency band (6-32 quarters):

Shock Unemployment Output Hours Work Investment Consumption

Long-run 33.9 56.6 30.8 43.8 32.8
[22.8, 46.4] [36.1, 73.7] [22, 41.3] [27.4, 59.1] [25.7, 40.2]

Short-run 46.8 42.1 39.4 41.3 23
[34.1, 57.7] [25.2, 63] [28.8, 48.3] [25.6, 57.7] [16.1, 30.8]

Total 80.7 98.7 70.2 85.1 55.8

Note. 80 percent HPDI in brackets
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TFP, Inflation & Interest Rates

▶ Supply shock (TFP) ↑ =⇒ GDP ↑ =⇒ inflation ↓
Taylor Rule
======⇒ nominal rates ↓

▶ Demand shock ↑ =⇒ GDP ↑ =⇒ inflation ↑
Taylor Rule
======⇒ nominal rates ↑
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TFP, Inflation & Interest Rates 1.1

TFP (6-32 Q) TFP (> 80Q) Inflation Nominal Int Rates

Supply Shock (long-run) 12.7 53.1 18.2 17.6
[5.9, 22.5] [28.7, 71.3] [10.4, 28.4] [8.4, 33.1]

Demand Shock (short-run) 8.3 0.23 11.7 52.5
[3, 17.3] [0.03, 1.05] [5.8, 19.8] [39.2, 62.1]

Note. 80 percent HPDI in brackets
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TFP, Inflation & Interest Rates 1.1

TFP (6-32 Q) TFP (> 80Q) Inflation Nominal Int Rates

Supply Shock (long-run) 12.7 53.1 (26) 18.2 17.6
[5.9, 22.5] [28.7, 71.3] [10.4, 28.4] [8.4, 33.1]

Demand Shock (short-run) 8.3 0.23 11.7 52.5 (17)
[3, 17.3] [0.03, 1.05] [5.8, 19.8] [39.2, 62.1]

Note. 80 percent HPDI in brackets

▶ The MBC shock is a linear combination of long-run supply and short-run demand shocks
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Non-Business Cycle Shocks 1.1

Shock Output TFP Investment Consumption

Supply (Long-run Volatility) 51.8 53.7 47.9 51.4
[26.7, 72.7] [29.4, 71.4] [22.4, 70.2] [26.1, 71.9]

Demand (Long-run Volatility) 0.2 0.04 0.4 0.15
[0.03, 1] [0, 0.2] [0.08, 1.9] [0.02, 0.8]

Total (Long-run Volatility) 52 53.74 48.3 51.55

Shock Output TFP Investment Consumption

Supply (Business Cycle Volatility) 56.6 13.7 43.8 32.8
[36.1, 73.7] [6.5, 23.7] [27.4, 59.1] [25.7, 40.2]

Demand (Business Cycle Volatility) 42.1 7.4 41.3 23
[25.2, 63] [2.5, 15.6] [25.6, 57.7] [16.1, 30.8]

Total (Business Cycle Volatility) 98.7 21.1 85.1 55.8

▶ Two business cycle shocks combined explain:
✱ 98.7% of business cycle GDP volatility
✱ 52% of long-run GDP volatility

▶ Evidence for significant fraction of long-run shocks that don’t drive business cycles
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Application for Policy Analysis

Application: SVAR identified conditional correlations
estmte
=====⇒ DSGE model parameters

Challenge: The trade-off between macro fit and structural accuracy for policy analysis

Chari, Kehoe & McGrattan (2009) argue:

▶ New Keynesian models are not ready for quarter-to-quarter policy advice

▶ Due to the need for macro models to fit macro data well

▶ Inclusion of non-structural shocks and mechanisms to fit the macro data

▶ Resulting in a large number of parameters lacking consistency with microeconomic evidence

▶ They advocate for simpler models with fewer, well-motivated parameters based
on micro evidence
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Application for Policy Analysis

Application: SVAR identified conditional correlations
estmte
=====⇒ DSGE model parameters

Challenge: The trade-off between macro fit and structural accuracy for policy analysis

Argue for parameter estimation using identified business cycle shocks in two ways:

1. Compare the normative & policy implications of the Smets-Wouter model estimated
under full-information and limited-information settings

2. Theoretically demonstrate that parameter estimates from full-information setting are
biased in the presence of non-business cycle shocks
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Smets & Wouters (2007)

▶ Using a Bayesian likelihood approach, estimate a medium-scale DSGE model to investigate:

✱ Relative empirical importance of the various frictions
✱ Sources of business cycle fluctuations
✱ Policy analysis

▶ Components:
1. Adjustment costs for investment
2. Capacity utilization costs
3. Habit persistence
4. Price & wage indexation and nominal rigidities
5. Seven structural shocks (3 supply, 4 demand)

▶ Seven Observables: GDP, Consumption, Investment, Wages, Hours Worked, Inflation, FFR

▶ This Paper: Estimates parameters via IRF matching
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Dissecting Smets-Wouters Observables

▶ Conclusions from empirical analysis section hold
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Volatility Contributions

Shock Output Hours Work Investment Consumption

Supply (Business Cycle Volatility) 57.3 23.8 43 26.8
[33.9, 76] [10.6, 36.1] [22.7, 60.3] [18.7, 36.6]

Demand (Business Cycle Volatility) 42.5 30.7 38.4 17.9
[23.6, 65.7] [16, 45.6] [20.4, 59.8] [ 8.3, 27.8]

Total (Business Cycle Volatility) 99.8 54.5 81.7 44.7

Supply (Long-run Volatility) 66.5 69.9 69.11 65
[36.9, 86.4] [44.8, 84.4] [40, 86.5] [34.9, 85.3]

Shock Inflation FFR Wages

Supply (Business Cycle Volatility) 22.3 15.3 19.8
[10.3, 37.9] [ 6.3, 30.9] [10.5, 32.5]

Demand (Business Cycle Volatility) 8.3 41.2 5.4
[ 3.1, 21] [25.4, 53.6] [ 2.3, 12.7]

Total (Business Cycle Volatility) 30.6 56.5 25.2

Supply (Long-run Volatility) 27.7 27.7 65.3
[11, 56] [13, 51.7] [33.8, 85.2]
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Supply Shock: SW Long-run TFP Shock
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Demand Shock: SW Risk Premia Shock
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Supply Shock: SW Long-run TFP Shock
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Normative & Policy Implications EP

▶ Policy trade-offs in IRF matching estimated model.
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Estimation Challenges
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Full Information Estimation Challenges

▶ I argue for downward bias in business cycle implications of DSGE models estimated
using Bayesian likelihood:

1. DSGE models have cross-frequency restrictions

2. Presence of long-run Non-Business Cycle shocks result in downward bias
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Spectral Representation of DSGE Model
▶ Canonical representation of the DSGE model:

0St = 1St−1 + ΨZt + ζt

St : Endogenous Variables, Zt : Exogenous Shocks, ζt : Expectational shocks
▶ Assuming a state-space representation and maping to observables Yt :

St = Θ1St−1 + Θ0ΨZt

Yt = A(L)St = A(L)
�

 − Θ1L
�−1

Θ0ΨZt = D(L;θ)Θ0(θ)Ψ(θ1)Zt
θ: model parameters, θ1: shock standard deviations

▶ Model implied Spectral Density of variable k due to shock l in Yt :

SD(ω,k, ;θ, θ1) =
1

2π

�

�M(ω,yk , ;θ)
�

�

2
σ
2
 , where M(ω,yk , ;θ) = D

k(eω;θ)Θ
0(θ)
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Log-likelihood Maximization

▶ Harvey 1989: The log-likelihood maximization of the model can be reduced to minimizing

S(θ) =
T
∑

j=t+1

(ωj, yk)
�

�

�M(ωj, yk , B;θ)
�

�

�

2

︸ ︷︷ ︸

long-run volatility

+
t
∑

j=1

(ωj, yk)
�

�

�M(ωj, yk , B;θ)
�

�

�

2

︸ ︷︷ ︸

short-run volatility

▶ Data implied volatility:


�

ωj, k
�

=
1

2π
D(yk , ωj, B)σ

2
B +

1

2π
D(yk , ωj, NB)σ

2
NB

▶ Shock Standard Deviation:

σ̃
2
B(θ) =

2π

T
S(θ)
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Cross-Frequency Restrictions Minima

▶ Harvey 1989: The log-likelihood maximization of the model can be reduced to minimizing

S(θ) =
T
∑

j=t+1

(ωj, yk)
�

�

�M(ωj, yk , B;θ)
�

�

�

2

︸ ︷︷ ︸

long-run volatility

+
t
∑

j=1

(ωj, yk)
�

�

�M(ωj, yk , B;θ)
�

�

�

2

︸ ︷︷ ︸

short-run volatility

▶ Data implied volatility:


�

ωj, k
�

=
1

2π
D(yk , ωj, B)σ

2
B +

1

2π
D(yk , ωj, NB)σ

2
NB

▶ Cross-frequency Restriction: Kolmogorov result
T
∑

j=t+1

log
�

�

�M(ωj, yk , B;θ)
�

�

�

2

︸ ︷︷ ︸

long-run

+
t
∑

j=1

log
�

�

�M(ωj, yk , B;θ)
�

�

�

2

︸ ︷︷ ︸

short-run

= 0
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Full Information Estimation Challenges

Theorem:
A1: Suppose ∃ θ

∗ s.t. D(ωj, yk , B) =M(ωj, yk , B;θ
∗) ∀ ωj where j ∈ {1,2, · · · , T}

∃ a vector of parameters
�

θ
∗� such that model implied volatility due to εB is equal to data

implied volatility of the business cycle shock at all frequencies ωj.

A2: Suppose ∃ θ
′ s.t.

D(ωj,yk ,B)+D(ωj,yk ,NB)κ
D(yk ,B,NB)

=M(ωj, yk , B;θ
′) ∀ ωj where j ∈ {1,2, · · · , T}

∃ a vector of parameters (θ′) such that model implied volatility due to a εB is equal to data
implied normalized volatility of both a business and non-business cycle shock

A3:
∑T

j=t+1D
�

ωj,yk ,NB
�

∑t
j=1D
�

ωj,yk ,NB
� >

∑T
j=t+1D
�

ωj,yk ,B
�

∑t
j=1D
�

ωj,yk ,B
�

Based on the identification results.
εNB: Short-run spectral density ≈ 0 and the long-run spectral density ≈ 50%.
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Full Information Estimation Challenges
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Full Information Estimation Challenges

Theorem:
A1: Suppose ∃ θ

∗ s.t. D(ωj, yk , B) =M(ωj, yk , B;θ
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A2: Suppose ∃ θ
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Under assumptions 1, 2 & 3, the minimization of S(θ) is achieved at true parameters θ∗ if and
only if σ2NB = 0.
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Downward Bias for Business Cycles

S(θ) =
T
∑

j=t+1
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2π

D(yk , ωj, B)σ
2
B + D(yk , ωj, NB)σ

2
NB
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�
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+
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�
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σ
2
NB ↑
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=========⇒

T
∑

j=t+1

�

�

�M(ωj, yk , B;θ)
�

�

�
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︸ ︷︷ ︸
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↑
restrcton
======⇒

t
∑

j=1

�

�

�M(ωj, yk , B;θ)
�

�

�

2

︸ ︷︷ ︸

short-run

↓

▶ θ changes such that model implied long-run volatility increases, resulting in
a downward bias on short-run volatility of the model
▶ Argues for estimation in a limited information setting
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Demand Shock: SW Risk Premia Shock
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Internal vs. External Propagation Theory

▶ Replaced likelihood estimated σRP (0.1762) with IRF matched estimation (0.0131)
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Internal vs. External Propagation

▶ Additionally replaced likelihood estimated investment elasticity (8.0145) with
IRF matching estimated (0.0145)
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Conclusion

▶ Empirical Results:

1. Both long-run supply and short-run demand shocks drive business cycles

2. DGP also comprises long-run shocks that don’t contribute to business cycles

▶ Estimation Results:

1. Long-run non-business cycle shocks result in a downward bias in business cycle
implications of DSGE models estimated in full-information setting

2. Solution: Estimation in limited information setting
✛ For instance, estimation of Smets & Wouters (2007) by IRF matching with the identified shocks.
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Appendix Slides
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Representation Identification Setup

▶ Wold Representation:

Yt = D(L)Qϵt

▶ Spectral density of a variable yj in Yt in the frequency band [ω, ω̄] is represented as:

D(yj, ω, ω̄) =
∫ ω̄

ω

�

D
j
�

e
−ω�

D
j
�

e
−ω�
�

dω

▶ For instance, spectral density of GDP in business-cycle frequency band (6-32 quarters):

D
�

GDP,
2π

32
,
2π

6

�
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Business Cycle Co-movement

▶ Volatility contribution at business-cycle frequency band (6-32 quarters):

Unemployment Output hours Work Investment Consumption

Supply Shock 31.1 49.5 30 38.8 32.5
[20.7, 45.8] [30.5, 71.6] [20.5, 40.7] [23.4, 58] [24.7, 39.9]

Demand Shock 49.5 49 40.7 45.8 23.4
[35.4, 59.4] [26.3, 67.8] [28, 49.2] [26.4, 61.6] [15.7, 31.7]

Note. 68 percent HPDI in brackets
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Check: 1

qr , qsr ≡ rg mx
qr ,qsr

qr
′
D

�

GDP,
2π

32
,
2π

6

�

qr+

qsr
′
�

1.01 D

�

GDP,
2π

32
,
2π

6

�

− D
�

TFP,
2π

∞
,
2π

80

��

qsr

s.t. q′rqr = 1, q
′
srqsr = 1, q

′
rqsr = 0
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Supply Shock IRFs

Figure IRFs
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Check: 2 TFP

qr , qsr ≡ rg mx
qr ,qsr

qr
′
D

�

GDP,
2π

32
,
2π

6

�

qr+

qsr
′
�

1.1 D

�

GDP,
2π

32
,
2π

6

�

− D
�

TFP,
2π

∞
,
2π

80

��

qsr

s.t. q′rqr = 1, q
′
srqsr = 1, q

′
rqsr = 0
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Supply Shock IRFs

Figure IRFs
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Blanchard & Quah (1989) Identification Setup

▶ Blanchard & Quah (1989):

✱ A bivariate VAR analysis of real GDP and unemployment.
✱ Zero long-run restriction: Only the aggregate supply shock has permanent effects on the level of

real GDP.
✱ The residual orthogonal shock is interpreted as an aggregate demand shock.
✱ They argue aggregate demand shocks as a key driver of business cycles.

ϵ
′
t = [ ϵ

ong−rn′

B,t ϵ
short−rn
B,t ϵ

resd
NB,t

︸ ︷︷ ︸

Aggregate Demand shock

ϵ
perm
B,t ϵ

perm
NB,t

︸ ︷︷ ︸

Aggregate Supply shock

]

✱ Confounds business and non-business cycle shocks.
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Barsky & Sims (2011) vs. Long-run TFP Shocks BS vs KS

▶ Long-run TFP shocks from Angeletos, Collard & Dellas (2020)
▶ Similar IRFs and business cycle volatility for macro variables.
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Overview: Model Estimation Results

In light of the evidence where we have two categories of long-run TFP shocks:

▶ Benchmark medium-scale DSGE models have model misspecification
✱ Similar to SVAR literature, DSGE models allow for one category of long-run TFP shocks

For instance, Smets & Wouters (2007)

✱ Full-information likelihood-based estimation of these models results in biased parameters

✱ Downward bias on business cycle implications of such models.

▶ Solution: Estimation in limited information setting
✱ Estimation of Smets & Wouters (2007) by IRF matching with the identified shocks.

▶ Result: Wage indexation and stickiness are key for propagation mechanism
relative to price & investment frictions.
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Demand Shock (short-run)

Note. 80 percent HPDI in brackets
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Supply Shock (long-run)

▶ Explains significant volatility of Une, Y, h, I and C at both frequency bands.
▶ Explains only long-run fluctuations of TFP.
▶ Explains significant labor productivity (Y/h) fluctuations at both frequency bands.
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Output Periodogram

Figure This figure shows an estimate of the spectral density of U.S. GDP per capita filtered
for periodicity above 20 quarters.
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ACD (2020): MBC Shock ACD

Figure IRFs
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Normative & Policy Implications
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Identification Setup Back

▶ MBC shock (q1): principal component analysis

mx
q1,q2

q
′
1Aq1 + q

′
2Aq2

s.t. q′1q1 = 1, q
′
2q1 = 1, q

′
2q1 = 0

▶ This paper: extrema of sums of heterogeneous quadratic forms (A ̸= B)

mx
q1,q2

q
′
1Aq1 + q

′
2Bq2

s.t. q′1q1 = 1, q
′
2q1 = 1, q

′
2q1 = 0

▶ Existence & Uniqueness: Bolla, M., Michaletzky, G., Tusnády, G., Ziermann, M. (1998)
▶ Convergence Algorithm: Jiang & Dai (2014)
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Spectral Representation of DSGE Model
▶ Canonical representation of the DSGE model:

0St = 1St−1 + ΨZt + ζt

St : Endogenous Variables, Zt : Exogenous Shocks, ζt : Expectational shocks
▶ Assuming a state-space representation and maping to observables Yt :

St = Θ1St−1 + Θ0ΨZt

Yt = A(L)St = A(L)
�

 − Θ1L
�−1

Θ0ΨZt = D(L;θ)Θ0(θ)Ψ(θ1)Zt
θ: model parameters, θ1: shock standard deviations

▶ Model implied Spectral Density of variable k due to shock l in Yt :

SD(ω,k, ;θ, θ1) =
1

2π

�

�M(ω,yk , ;θ)
�

�

2
σ
2
 , where M(ω,yk , ;θ) = D

k(eω;θ)Θ
0(θ)
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Likelihood Function of DSGE Models Application

▶ Harvey 1989: The log-likelihood function of the state space model in frequency domain

log L
�

θ, θ1
�

= −
T
∑

j=1






log

1

2π

�

�

�M(ωj, yk , B;θ)
�

�

�

2
σ
2
B +

(ωj, yk)

1
2π

�

�

�M(ωj, yk , B;θ)
�

�

�

2
σ
2
B







▶ Maximising log L with respect to σ
2
B gives:

σ̃
2
B(θ) =

2π

T

T
∑

j=1

(ωj, yk)
�

�

�M(ωj, yk , B;θ)
�

�

�

2
=
2π

T
S(θ)

▶ Reducing the maximize log L objective to minimising

S(θ) =
t
∑

j=1

(ωj, yk)
�

�

�M(ωj, yk , B;θ)
�

�

�

2

︸ ︷︷ ︸

long-run volatility

+
T
∑

j=t+1

(ωj, yk)
�

�

�M(ωj, yk , B;θ)
�

�

�

2

︸ ︷︷ ︸

short-run volatility
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Cross-Frequency Restrictions
▶ Simplifying objective function into long-run and short-run volatility:

S(θ) =
t
∑

j=1
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▶ Data implied volatility:
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▶ Cross-frequency Restriction: Kolmogorov result
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Cross-Frequency Restrictions
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Cross-Frequency Restrictions CFR
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▶ Minimizes S(θ) to T
σ
2
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2π for true parameter (θ∗) values if σ2NB = 0
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Downward Bias for Business Cycles
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▶ θ changes such that model implied long-run volatility increases, resulting in
a downward bias on short-run volatility of the model
▶ Argues for estimation in a limited information setting
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Estimated Parameters NPI

Parameter Description IRF Matching Bayesian Likelihood

ρg Feedback TFP on exogenous spending 0.9905 0.2272
100
�

β
−1 − 1
�

time preference rate in percent 1.7162 0.1239
α capital share 0.178 0.2079
ψ capacity utilization cost 0.9658 0.6723
Θ investment adjustment cost 0.0145 8.0415
σc risk aversion 1.5866 1.3295
λ external habit degree 0.6084 0.8789
Θ fixed cost share 1 1.4888
 Indexation to past wages 0.8241 0.5542
ξ Calvo parameter wages 0.86 0.8682
p Indexation to past prices 0 0.2127
ξp Calvo parameter prices 0.72 0.7697
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Estimated Parameters

Parameter Description IRF Matching Bayesian Likelihood

σ Frisch elasticity 0.25 2.2934
rπ Taylor rule inflation feedback 1 1.7822
r△y Taylor rule output growth feedback 0.3835 0.0010
ry Taylor rule output level feedback 0.064 0.1907
ρ interest rate persistence 0.7522 0.8283
ρ persistence productivity shock 0.9974 0.9975
ρb persistence risk premium shock 0.83 0.2751
ρg persistence spending shock 0.9795 0.9810
γ growth rate 1 1.0032
σ Std. productivity shock 0.4247 0.5557
σb Std. risk premium shock 0.0131 0.1762
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Smets-Wouter Model

yt = cyct + yt + r
kss

kyεt + ϵ
g
t
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