Dissecting Business Cycles

Sanjay Moorjani

September 20, 2023

Motivation

- Goal: Relative role of long-run supply and short-run demand shocks in driving business cycles
 - * Identifying dynamic causal effects of business cycle shocks provides valuable insights into the internal propagation mechanism (amplification or persistence)
 - * Monetary authority faces policy trade-offs due to long-run supply-driven business cycles
 - * Literature has conflicting conclusions about the role of long-run supply-driven business cycles

Introduction Empirical Analysis Limited Information Estimation Challenges

#2

Motivation

- Goal: Relative role of long-run supply and short-run demand shocks in driving business cycles
 - * Identifying dynamic causal effects of business cycle shocks provides valuable insights into the internal propagation mechanism (amplification or persistence)
 - * Monetary authority faces policy trade-offs due to long-run supply-driven business cycles
 - * Literature has conflicting conclusions about the role of long-run supply-driven business cycles
- ► Literature: Identifies long-run productivity shocks $\stackrel{evaluate}{\Longrightarrow}$ business-cycle GDP fluctuations
- ► **This Paper**: Dissects GDP fluctuations to identify shocks that explain business-cycle volatility of GDP

Identified **business-cycle shocks** $\stackrel{evaluate}{=\!=\!=\!=\!=}$ **long-run productivity** fluctuations

But why a new approach?

Allows for **two** categories of long-run productivity shocks. One causes business cycles and the other doesn't.

► Literature: Identifies long-run productivity shocks $\stackrel{evaluate}{\Longrightarrow}$ business-cycle GDP fluctuations

Q: Does an average aggregate long-run TFP shock drive business cycles?

- * Two assumptions:
 - 1. Long-run TFP shocks are exogenous
 - 2. There exists only one category of long-run productivity shock
- ► This Paper: Identifies business-cycle shocks $\stackrel{evaluate}{=\!=\!=\!=\!=}$ long-run productivity fluctuations

But why a new approach?

Allows for **two** categories of long-run productivity shocks. One causes business cycles and the other doesn't.

► Literature: Identifies long-run productivity shocks $\stackrel{evaluate}{\Longrightarrow}$ business-cycle GDP fluctuations

Q: Does an average aggregate long-run TFP shock drive business cycles?

- * Two assumptions:
 - 1. Long-run TFP shocks are exogenous
 - 2. There exists only one category of long-run productivity shock
- ► This Paper: Identifies business-cycle shocks long-run productivity fluctuations
 - **Q**: Does there exist any subset of long-run TFP shocks that may drive business cycles?
 - * Weakens assumption 2. Allows for two categories of long-run productivity shocks
 - * Assumption 1 holds. Avoids reverse causality

Business Cycle Shocks

- ► ACD: Angeletos, Collard & Dellas (2020):
 - * Argue non-inflationary demand shocks drive business cycles.

- * Extract a shock that explains maximum business cycle volatility of real per capita GDP.
- ► **Key Assumption**: Business cycles have a dynamic factor structure and there's one factor.
 - * In other words, single shock drives business cycles.
 - * MBC shock: 1st principal component

Business Cycle Shocks

- ► ACD: Angeletos, Collard & Dellas (2020):
 - * Argue non-inflationary demand shocks drive business cycles.

- * Extract a shock that explains maximum business cycle volatility of real per capita GDP.
- **Key Assumption**: Business cycles have a dynamic factor structure and there's one factor.
 - * In other words, single shock drives business cycles.
 - * MBC shock: 1st principal component
- I test this key assumption on the number of dynamic factors.
 - * There are two factors.
 - Separate them using a hypothesis, some of these shocks have long-run implications and some don't.
 - * Based on empirical results, I interpret the two shocks as supply and demand shocks.

Number of Dynamic Factors?

Figure Scree Plot

Eigenvalues for a spectral matrix of GDP at business cycle frequency band. Horizontal axis: Total principal components or eigenvalues.

► **This Paper**: The **MBC** shock is a <u>linear combination</u> of supply and demand shocks

Overview: Results

Using a novel SVAR identification strategy to dissect business cycle fluctuations:

- > Yes, a significant fraction of long-run TFP shocks drive business cycles
- Sources of Business Cycle Fluctuations:
 - * Identify two business cycle shocks, a short-run and a long-run shock
 - * Further identified as a long-run **supply shock** and a short-run **demand shock** based on conditional correlations of macro variables

Overview: Results

Using a novel SVAR identification strategy to dissect business cycle fluctuations:

- Yes, a significant fraction of long-run TFP shocks drive business cycles
- Sources of Business Cycle Fluctuations:
 - * Identify two business cycle shocks, a short-run and a long-run shock
 - * Further identified as a long-run **supply shock** and a short-run **demand shock** based on conditional correlations of macro variables
- Also a second category of long-run TFP shocks that don't drive business cycles
 - * Leads to biased parameters of DSGE models estimated in a full information setting
 - * Significant normative & policy implications
 - * Solution: Estimation via IRF matching with the identified business cycle shocks

Literature Review

SVAR Identification (Technology Shocks):

```
Blanchard & Quah (1989); Gali (1999); Basu, Fernald & Kimball (2006);

Beaudry & Portier (2006); Barsky & Sims (2011); Francis et al. (2014); Barsky, Basu & Lee (2014); Chahrour & Jurado (2018); Angeletos, Collard & Dellas (2020); Kurmann & Sims (2022); Chahrour, Chugh & Potter (2022);
```

- * Conflicting conclusions about the role of long-run TFP shocks
- * Argue for (non-inflationary) demand shocks as the key driver of business cycles.

► Limited Information Estimation:

```
Rotemberg & Woodford (1997), Christiano, Eichenbaum & Evans (2005), Barnichon & Mesters (2020), Lewis & Mertens (2023)
```

* Identify macro equations through structural shocks

Outline

- 1. Identification Setup
- 2. Results
- 3. Model Estimation Challenges
- 4. Application: Smets & Wouters (2007)

Introduction Empirical Analysis Limited Information Estimation Challenges

#8

Empirical Analysis

Baseline VAR

- Data follows the benchmark VAR of ACD (2020):
 - * Quarterly U.S data: 1955Q1-2019Q4
 - * Macro Quantities: Unemployment, GDP, Hours, Invest. (inclusive of durables), Cons.
 - * **Productivity**: util-adjust TFP, NFB labor productivity;
 - * Nominal: Inflation (GDP Delator), Federal Fund Rate, Labor Share
 - * Bayesian VAR, 2 Lags
- **▶** Wold Representation:

$$Y_t = D(L)Q\varepsilon_t$$

10

where, ε_t are structural shocks.

Identification

11

- ▶ B: Linear combination of the VAR residuals that explain significant volatility of GDP at the business-cycle frequencies, 6-32 quarters
- \triangleright $\varepsilon_{B,t}^{short-run}$: Business cycle shocks that don't contribute to long-run volatility of GDP
- Following ACD (2020), long-run refers to fluctuations of periodicity >20 years
- $\triangleright \varepsilon_{B,t}^{long-run}$: Residual business cycle shocks
- Structural assumptions consistent with the literature.

12

$$\begin{aligned} q_{lr}^*, q_{sr}^* &\equiv \arg\max_{q_{lr}, q_{sr}} \ q_{lr}' \mathcal{D} \bigg(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \bigg) q_{lr} + q_{sr}' \mathcal{D} \bigg(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \bigg) q_{sr} \\ &- q_{sr}' \mathcal{D} \bigg(GDP, \frac{2\pi}{\infty}, \frac{2\pi}{80} \bigg) q_{sr} \end{aligned}$$
 s.t. $q_{lr}' q_{lr} = 1, q_{sr}' q_{sr} = 1, q_{lr}' q_{sr} = 0$

► Identify two orthogonal shocks q_{lr}^* and q_{sr}^*

12

$$\begin{aligned} q_{lr}^*, q_{sr}^* &\equiv \arg\max_{q_{lr}, q_{sr}} \ q_{lr}' \mathcal{D} \bigg(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \bigg) q_{lr} + q_{sr}' \mathcal{D} \bigg(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \bigg) q_{sr} \\ &- q_{sr}' \mathcal{D} \bigg(GDP, \frac{2\pi}{\infty}, \frac{2\pi}{80} \bigg) q_{sr} \end{aligned}$$
 s.t. $q_{lr}' q_{lr} = 1, q_{sr}' q_{sr} = 1, q_{lr}' q_{sr} = 0$

- lacktriangle Identify two orthogonal shocks q_{lr}^* and q_{sr}^*
- Both together explain the maximum volatility of real per capita GDP at business cycle frequency

12

$$\begin{aligned} q_{lr}^*, q_{sr}^* &\equiv \arg\max_{q_{lr}, q_{sr}} \ q_{lr}' \mathcal{D} \bigg(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \bigg) q_{lr} + q_{sr}' \mathcal{D} \bigg(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \bigg) q_{sr} \\ &- q_{sr}' \mathcal{D} \bigg(GDP, \frac{2\pi}{\infty}, \frac{2\pi}{80} \bigg) q_{sr} \end{aligned}$$
 s.t. $q_{lr}' q_{lr} = 1, q_{sr}' q_{sr} = 1, q_{lr}' q_{sr} = 0$

- lacktriangle Identify two orthogonal shocks q_{lr}^* and q_{sr}^*
- Both together explain the maximum volatility of real per capita GDP at business cycle frequency
- Penalize q_{sr}^* for explaining long-run volatility of GDP

12

$$\begin{aligned} q_{lr}^{*}, q_{sr}^{*} &\equiv \arg\max_{q_{lr}, q_{sr}} \ q_{lr}' \mathcal{D} \bigg(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \bigg) q_{lr} + q_{sr}' \mathcal{D} \bigg(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \bigg) q_{sr} \\ &- q_{sr}' \mathcal{D} \bigg(GDP, \frac{2\pi}{\infty}, \frac{2\pi}{80} \bigg) q_{sr} \end{aligned}$$
 s.t. $q_{lr}' q_{lr} = 1, q_{sr}' q_{sr} = 1, q_{lr}' q_{sr} = 0$

- lacksquare Identify two orthogonal shocks q_{lr}^* and q_{sr}^*
- Both together explain the maximum volatility of real per capita GDP at business cycle frequency
- Penalize q_{sr}^* for explaining long-run volatility of GDP
- Results robust to long-run restrictions via labor productivity, TFP, Consumption

12

$$\begin{aligned} q_{lr}^*, q_{sr}^* &\equiv \arg\max_{q_{lr}, q_{sr}} \ q_{lr}' \mathcal{D} \bigg(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \bigg) q_{lr} + q_{sr}' \mathcal{D} \bigg(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \bigg) q_{sr} \\ &- q_{sr}' \mathcal{D} \bigg(GDP, \frac{2\pi}{\infty}, \frac{2\pi}{80} \bigg) q_{sr} \end{aligned}$$
 s.t. $q_{lr}' q_{lr} = 1, q_{sr}' q_{sr} = 1, q_{lr}' q_{sr} = 0$

- lacksquare Identify two orthogonal shocks q_{lr}^* and q_{sr}^*
- Both together explain the maximum volatility of real per capita GDP at business cycle frequency
- Penalize q_{sr}^* for explaining long-run volatility of GDP
- Results robust to long-run restrictions via labor productivity, TFP, Consumption
- \blacktriangleright Key: Not rewarding q_{lr}^* for explaining long-run TFP movements

▶ **MBC** shock (q_1) : principal component analysis

$$\max_{q_1,q_2} q_1' \mathbf{A} q_1 + q_2' \mathbf{A} q_2$$

s.t.
$$q_1'q_1 = 1$$
, $q_2'q_1 = 1$, $q_2'q_1 = 0$

This paper: extrema of sums of heterogeneous quadratic forms (A \neq B)

$$\max_{q_1,q_2} q_1' A q_1 + q_2' B q_2$$

s.t.
$$q_1'q_1 = 1$$
, $q_2'q_1 = 1$, $q_2'q_1 = 0$

- **Existence & Uniqueness:** Bolla, M., Michaletzky, G., Tusnády, G., Ziermann, M. (1998)
- ► Convergence Algorithm: Jiang & Dai (2014)

Business Cycle Co-movement

▶ Volatility contribution at business-cycle frequency band (6-32 quarters):

Shock	Unemployment	Output	Hours Work	Investment	Consumption
Long-run	33.9	56.6	30.8	43.8	32.8
	[22.8, 46.4]	[36.1, 73.7]	[22, 41.3]	[27.4, 59.1]	[25.7, 40.2]
Short-run	46.8	42.1	39.4	41.3	23
	[34.1, 57.7]	[25.2, 63]	[28.8, 48.3]	[25.6, 57.7]	[16.1, 30.8]
Total	80.7	98.7	70.2	85.1	55.8

NOTE. 80 percent HPDI in brackets

TFP, Inflation & Interest Rates

- ► Supply shock (TFP) $\uparrow \implies$ GDP $\uparrow \implies$ inflation $\downarrow \xrightarrow{\text{Taylor Rule}}$ nominal rates \downarrow
- ▶ **Demand shock** $\uparrow \implies$ GDP $\uparrow \implies$ inflation $\uparrow \xrightarrow{\text{Taylor Rule}}$ nominal rates \uparrow

16

	TFP (6-32 Q)	TFP (> 80Q)	Inflation	Nominal Int Rates
Supply Shock (long-run)	12.7	53.1	18.2	17.6
	[5.9, 22.5]	[28.7, 71.3]	[10.4, 28.4]	[8.4, 33.1]
Demand Shock (short-run)	8.3	0.23	11.7	52.5
	[3, 17.3]	[0.03, 1.05]	[5.8, 19.8]	[39.2, 62.1]

NOTE. 80 percent HPDI in brackets

	TFP (6-32 Q)	TFP (> 80Q)	Inflation	Nominal Int Rates
Supply Shock (long-run)	12.7	53.1	18.2	17.6
	[5.9, 22.5]	[28.7, 71.3]	[10.4, 28.4]	[8.4, 33.1]
Demand Shock (short-run)	8.3	0.23	11.7	52.5
	[3, 17.3]	[0.03, 1.05]	[5.8, 19.8]	[39.2, 62.1]

NOTE, 80 percent HPDI in brackets

► The **MBC** shock is a linear combination of long-run supply and short-run demand shocks

	TFP (6-32 Q)	TFP (> 80Q)	Inflation	Nominal Int Rates
Supply Shock (long-run)	12.7	53.1	18.2	17.6
	[5.9, 22.5]	[28.7, 71.3]	[10.4, 28.4]	[8.4, 33.1]
Demand Shock (short-run)	8.3	0.23	11.7	52.5
	[3, 17.3]	[0.03, 1.05]	[5.8, 19.8]	[39.2, 62.1]

Note, 80 percent HPDI in brackets

- ► The MBC shock is a linear combination of long-run supply and short-run demand shocks
- ► Also evidence for significant long-run TFP shocks that don't drive business cycles

Limited Information Estimation

Smets & Wouters (2007)

- Using a Bayesian likelihood approach, estimate a medium-scale DSGE model to investigate:
 - * Relative empirical importance of the various frictions
 - * Sources of business cycle fluctuations
 - * Policy analysis

► Components:

- 1. Adjustment costs for investment
- 2. Capacity utilization costs
- 3. Habit persistence
- 4. Price & wage indexation and nominal rigidities
- 5. Seven structural shocks (one long-run, six short-run)
- Seven Observables: GDP, Consumption, Investment, Wages, Hours Worked, Inflation, FFR

Smets & Wouters (2007)

- ▶ Using a **Bayesian likelihood** approach, estimate a medium-scale **DSGE** model to investigate:
 - * Relative empirical importance of the various frictions
 - * Sources of business cycle fluctuations
 - * Policy analysis

► Components:

- 1. Adjustment costs for investment
- 2. Capacity utilization costs
- 3. Habit persistence
- 4. Price & wage indexation and nominal rigidities
- 5. Seven structural shocks (one long-run, six short-run)
- **Seven Observables**: GDP, Consumption, Investment, Wages, Hours Worked, Inflation, FFR
- ► This Paper: Estimates parameters via IRF matching

Dissecting Smets-Wouters Observables

Conclusions from empirical analysis section hold

Volatility Contributions

Shock	Output	Hours Work	Investment	Consumption
Supply (Business Cycle Volatility)	57.3	23.8	43	26.8
	[33.9, 76]	[10.6, 36.1]	[22.7, 60.3]	[18.7, 36.6]
Demand (Business Cycle Volatility)	42.5	30.7	38.4	17.9
	[23.6, 65.7]	[16, 45.6]	[20.4, 59.8]	[8.3, 27.8]
Total (Business Cycle Volatility)	99.8	54.5	81.7	44.7
Supply (Long-run Volatility)	66.5	69.9	69.11	65
	[36.9, 86.4]	[44.8, 84.4]	[40, 86.5]	[34.9, 85.3]

Shock	Inflation	FFR	Wages
Supply (Business Cycle Volatility)	22.3	15.3	19.8
	[10.3, 37.9]	[6.3, 30.9]	[10.5, 32.5]
Demand (Business Cycle Volatility)	8.3	41.2	5.4
	[3.1, 21]	[25.4, 53.6]	[2.3, 12.7]
Total (Business Cycle Volatility)	30.6	56.5	25.2
Supply (Long-run Volatility)	27.7	27.7	65.3
	[11, 56]	[13, 51.7]	[33.8, 85.2]

Supply Shock: SW Long-run TFP Shock

Demand Shock: SW Risk Premia Shock

Supply Shock: SW Long-run TFP Shock

Normative & Policy Implications

Policy trade-offs in IRF matching estimated model.

Estimation Challenges

Full Information Estimation Challenges

In the following section,

- ► I argue for downward bias in business cycle implications of **DSGE** models estimated using Bayesian likelihood:
 - 1. DSGE models have cross-frequency restrictions
 - 2. Presence of long-run Non-Business Cycle shocks result in downward bias

Spectral Representation of DSGE Model

Canonical representation of the DSGE model:

$$\Gamma_0 S_t = \Gamma_1 S_{t-1} + \Psi Z_t + \Pi \zeta_t$$

 \mathbf{S}_t : Endogenous Variables, \mathbf{Z}_t : Exogenous Shocks, ζ_t : Expectational shocks

ightharpoonup Assuming a state-space representation and maping to observables $m Y_{\it t}$:

$$S_t = \Theta_1 S_{t-1} + \Theta_0 \Psi Z_t$$

$$Y_t = A(L)S_t = A(L)(I - \Theta_1 L)^{-1}\Theta_0 \Psi Z_t = \mathbf{D}(L; \theta)\mathbf{\Theta}_0(\theta)\mathbf{\Psi}(\theta_1)Z_t$$

 θ : model parameters, θ_1 : shock standard deviations

Spectral Representation of DSGE Model

► Canonical representation of the DSGE model:

$$\Gamma_0 S_t = \Gamma_1 S_{t-1} + \Psi Z_t + \Pi \zeta_t$$

 \mathbf{S}_t : Endogenous Variables, \mathbf{Z}_t : Exogenous Shocks, ζ_t : Expectational shocks

ightharpoonup Assuming a state-space representation and maping to observables $m Y_{\it t}$:

$$S_t = \Theta_1 S_{t-1} + \Theta_0 \Psi Z_t$$

$$Y_t = A(L)S_t = A(L)(I - \Theta_1 L)^{-1}\Theta_0 \Psi Z_t = \mathbf{D}(L;\theta)\Theta_0(\theta)\Psi(\theta_1)Z_t$$

 θ : model parameters, θ_1 : shock standard deviations

ightharpoonup Model implied **Spectral Density** of variable **k** due to shock **l** in \mathbf{Y}_t :

$$SD(\omega, k, l; \theta, \theta_1) = \frac{1}{2\pi} \left| \mathcal{M}(\omega, y_k, l; \theta) \right|^2 \sigma_l^2, \quad \text{where} \quad \mathcal{M}(\omega, y_k, l; \theta) = \mathbf{D}^k(e^{i\omega}; \theta) \mathbf{\Theta}_0^l(\theta)$$

Likelihood Function of DSGE Models

28

The log-likelihood function of the state space model in frequency domain (Harvey 1989)

$$\log L\left(\theta,\theta_{1}\right) = -\sum_{j=1}^{T} \left(\log \frac{1}{2\pi} \left| \mathcal{M}(\omega_{j},y_{k},lB;\theta) \right|^{2} \sigma_{lB}^{2} + \frac{I(\omega_{j},y_{k})}{\frac{1}{2\pi} \left| \mathcal{M}(\omega_{j},y_{k},lB;\theta) \right|^{2} \sigma_{lB}^{2}} \right)$$

Likelihood Function of DSGE Models

► The log-likelihood function of the state space model in frequency domain (Harvey 1989)

$$\log L\left(\theta,\theta_{1}\right) = -\sum_{j=1}^{T} \left(\log \frac{1}{2\pi} \left| \mathcal{M}(\omega_{j},y_{k},lB;\theta) \right|^{2} \sigma_{lB}^{2} + \frac{I(\omega_{j},y_{k})}{\frac{1}{2\pi} \left| \mathcal{M}(\omega_{j},y_{k},lB;\theta) \right|^{2} \sigma_{lB}^{2}} \right)$$

► Maximising log L with respect to σ_{IB}^2 gives:

$$\tilde{\sigma}_{lB}^{2}(\theta) = \frac{2\pi}{T} \sum_{j=1}^{T} \frac{I(\omega_{j}, y_{k})}{\left| \mathcal{M}(\omega_{j}, y_{k}, lB; \theta) \right|^{2}} = \frac{2\pi}{T} S(\theta)$$

► Reducing the maximize log L objective to **minimising**

$$S(\theta) = \underbrace{\sum_{j=1}^{t} \frac{I(\omega_{j}, y_{k})}{\left| \mathcal{M}(\omega_{j}, y_{k}, lB; \theta) \right|^{2}}}_{\text{long-run volatility}} + \underbrace{\sum_{j=t+1}^{T} \frac{I(\omega_{j}, y_{k})}{\left| \mathcal{M}(\omega_{j}, y_{k}, lB; \theta) \right|^{2}}}_{\text{short-run volatility}}$$

Simplifying objective function into long-run and short-run volatility:

$$S(\theta) = \sum_{j=1}^{t} \frac{I(\omega_{j}, y_{k})}{\left| \mathcal{M}(\omega_{j}, y_{k}, lB; \theta) \right|^{2}} + \sum_{j=t+1}^{T} \frac{I(\omega_{j}, y_{k})}{\left| \mathcal{M}(\omega_{j}, y_{k}, lB; \theta) \right|^{2}}$$

$$= \underbrace{\sum_{j=t+1}^{t} \frac{I(\omega_{j}, y_{k})}{\left| \mathcal{M}(\omega_{j}, y_{k}, lB; \theta) \right|^{2}}}_{\text{Short-run volatility}}$$

▶ Simplifying objective function into long-run and short-run volatility:

$$S(\theta) = \underbrace{\sum_{j=1}^{t} \frac{I(\omega_{j}, y_{k})}{\left| \mathcal{M}(\omega_{j}, y_{k}, lB; \theta) \right|^{2}}}_{\text{long-run volatility}} + \underbrace{\sum_{j=t+1}^{T} \frac{I(\omega_{j}, y_{k})}{\left| \mathcal{M}(\omega_{j}, y_{k}, lB; \theta) \right|^{2}}}_{\text{short-run volatility}}$$

Data implied volatility:

$$I(\omega_j, k) = \frac{1}{2\pi} \mathcal{D}(y_k, \omega_j, lB) \sigma_{lB}^2 + \frac{1}{2\pi} \mathcal{D}(y_k, \omega_j, lNB) \sigma_{lNB}^2$$

Cross-frequency Restriction: Kolmogorov result

$$\underbrace{\sum_{j=1}^{t} \log \left| \mathcal{M}(\omega_{j}, y_{k}, lB; \theta) \right|^{2}}_{\text{long-run}} + \underbrace{\sum_{j=t+1}^{T} \log \left| \mathcal{M}(\omega_{j}, y_{k}, lB; \theta) \right|^{2}}_{\text{short-run}} = 0$$

► Suppose $\exists \theta^*$ s.t. $\mathcal{D}(y_k, \omega_j, lB) = \left| \mathcal{M}(\omega_j, y_k, lB; \theta^*) \right|^2 \forall \omega_j$

$$S(\theta) = \sum_{j=1}^{t} \frac{1}{2\pi} \frac{\mathcal{D}(y_k, \omega_j, lB) \sigma_{lB}^2 + \mathcal{D}(y_k, \omega_j, lNB) \sigma_{lNB}^2}{\left| \mathcal{M}(\omega_j, y_k, lB; \theta) \right|^2} + \sum_{j=t+1}^{T} \frac{1}{2\pi} \frac{\mathcal{D}(y_k, \omega_j, lB) \sigma_{lB}^2 + 0}{\left| \mathcal{M}(\omega_j, y_k, lB; \theta) \right|^2}$$
short-run volatility

► Suppose $\exists \theta^*$ s.t. $\mathcal{D}(y_k, \omega_j, lB) = \left| \mathcal{M}(\omega_j, y_k, lB; \theta^*) \right|^2 \forall \omega_j$

$$S(\theta) = \underbrace{\sum_{j=1}^{t} \frac{1}{2\pi} \frac{\mathcal{D}(y_k, \omega_j, lB) \sigma_{lB}^2 + \mathcal{D}(y_k, \omega_j, lNB) \sigma_{lNB}^2}{\left| \mathcal{M}(\omega_j, y_k, lB; \theta) \right|^2}}_{\text{long-run volatility}} + \underbrace{\sum_{j=t+1}^{T} \frac{1}{2\pi} \frac{\mathcal{D}(y_k, \omega_j, lB) \sigma_{lB}^2 + 0}{\left| \mathcal{M}(\omega_j, y_k, lB; \theta) \right|^2}}_{\text{short-run volatility}}$$

$$S(\theta^*) = \underbrace{\sum_{j=1}^{t} \frac{\sigma_{lB}^2}{2\pi} + \frac{\mathcal{D}(y_k, \omega_j, INB)\sigma_{INB}^2}{\left|\mathcal{M}(\omega_j, y_k, lB; \theta^*)\right|^2}}_{\text{long-run volatility}} + \underbrace{\sum_{j=t+1}^{T} \frac{\sigma_{lB}^2}{2\pi}}_{\text{short-run volatility}} = T\frac{\sigma_{lB}^2}{2\pi} + \underbrace{\sum_{j=1}^{t} \frac{\mathcal{D}(y_k, \omega_j, INB)\sigma_{INB}^2}{\left|\mathcal{M}(\omega_j, y_k, lB; \theta^*)\right|^2}}_{\text{short-run volatility}}$$

► Minimizes $S(\theta)$ to $T\frac{\sigma_{lB}^2}{2\pi}$ for true parameter (θ^*) values if $\sigma_{lNB}^2 = 0$

Downward Bias for Business Cycles

$$S(\theta) = \underbrace{\sum_{j=1}^{t} \frac{1}{2\pi} \frac{\mathcal{D}(y_k, \omega_j, lB) \sigma_{lB}^2 + \mathcal{D}(y_k, \omega_j, lNB) \sigma_{lNB}^2}{\left| \mathcal{M}(\omega_j, y_k, lB; \theta) \right|^2}}_{\text{long-run volatility}} + \underbrace{\sum_{j=t+1}^{T} \frac{1}{2\pi} \frac{\mathcal{D}(y_k, \omega_j, lB) \sigma_{lB}^2 + 0}{\left| \mathcal{M}(\omega_j, y_k, lB; \theta) \right|^2}}_{\text{short-run volatility}}$$

$$\sigma_{INB}^{2} \uparrow \xrightarrow{\text{minimize } S(\theta)} \underbrace{\sum_{j=1}^{t} \left| \mathcal{M}(\omega_{j}, y_{k}, lB; \theta) \right|^{2}}_{\text{long-run}} \uparrow \xrightarrow{\text{restriction}} \underbrace{\sum_{j=t+1}^{T} \left| \mathcal{M}(\omega_{j}, y_{k}, lB; \theta) \right|^{2}}_{\text{short-run}} \downarrow$$

- changes such that model implied long-run volatility increases, resulting in a downward bias on short-run volatility of the model
- Argues for estimation in a limited information setting

Demand Shock: SW Risk Premia Shock

Internal vs. External Propagation

Replaced likelihood estimated σ_{RP} (0.1762) with IRF matched estimation (0.0131)

Internal vs. External Propagation

Additionally replaced likelihood estimated investment elasticity (8.0145) with IRF matching estimated (0.0145)

Conclusion

► Empirical Results:

- 1. Both long-run supply and short-run demand shocks drive business cycles
- 2. DGP also comprises long-run shocks that don't contribute to business cycles

Estimation Results:

- Long-run non-business cycle shocks result in a downward bias in business cycle implications of DSGE models estimated in full-information setting
- 2. Solution: Estimation in limited information setting
 - + For instance, estimation of Smets & Wouters (2007) by IRF matching with the identified shocks.

Appendix Slides

<u>Introduction</u> <u>Empirical Analysis</u> <u>Limited Information</u> <u>Estimation Challenges</u>

Representation

► Wold Representation:

$$Y_t = D(L)Q\varepsilon_t$$

▶ Spectral density of a variable y_i in Y_t in the frequency band $[\underline{\omega}, \bar{\omega}]$ is represented as:

$$\mathcal{D}(y_j, \underline{\omega}, \bar{\omega}) = \int_{\omega}^{\bar{\omega}} \left(\overline{D^j(e^{-i\omega})} D^j(e^{-i\omega}) \right) d\omega$$

For instance, spectral density of GDP in business-cycle frequency band (6-32 quarters):

$$\mathcal{D}\left(GDP,\frac{2\pi}{32},\frac{2\pi}{6}\right)$$

Business Cycle Co-movement

Volatility contribution at business-cycle frequency band (6-32 quarters):

	Unemployment	Output	hours Work	Investment	Consumption
Supply Shock	31.1	49.5	30	38.8	32.5
	[20.7, 45.8]	[30.5, 71.6]	[20.5, 40.7]	[23.4, 58]	[24.7, 39.9]
Demand Shock	49.5	49	40.7	45.8	23.4
	[35.4, 59.4]	[26.3, 67.8]	[28, 49.2]	[26.4, 61.6]	[15.7, 31.7]

NOTE. 68 percent HPDI in brackets

Check: 1

$$\begin{aligned} q_{lr}, q_{sr} &\equiv \arg\max_{q_{lr},q_{sr}} \frac{q_{lr}}{D} \left(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \right) q_{lr} + \\ q_{sr}' \left(1.01 \ D \left(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \right) - D \left(TFP, \frac{2\pi}{\infty}, \frac{2\pi}{80} \right) \right) q_{sr} \\ &\text{s.t. } q'_{lr} q_{lr} = 1, q'_{sr} q_{sr} = 1, q'_{lr} q_{sr} = 0 \end{aligned}$$

Supply Shock IRFs

Figure IRFs

41

$$\begin{aligned} q_{lr}, q_{sr} &\equiv \arg\max_{q_{lr}, q_{sr}} \mathbf{q}_{lr}' D\bigg(GDP, \frac{2\pi}{32}, \frac{2\pi}{6}\bigg) \mathbf{q}_{lr} + \\ q_{sr}' \bigg(1.1 \ D\bigg(GDP, \frac{2\pi}{32}, \frac{2\pi}{6}\bigg) - D\bigg(TFP, \frac{2\pi}{\infty}, \frac{2\pi}{80}\bigg)\bigg) q_{sr} \\ \text{s.t. } q'_{lr} q_{lr} &= 1, q'_{sr} q_{sr} = 1, q'_{lr} q_{sr} = 0 \end{aligned}$$

Supply Shock IRFs

Figure IRFs

Blanchard & Quah (1989)

43

► Blanchard & Quah (1989):

- * A bivariate VAR analysis of real GDP and unemployment.
- Zero long-run restriction: Only the aggregate supply shock has permanent effects on the level of real GDP.
- * The residual orthogonal shock is interpreted as an aggregate demand shock.
- * They argue aggregate demand shocks as a key driver of business cycles.

$$\boldsymbol{\varepsilon}_t' = [\begin{array}{ccc} \boldsymbol{\varepsilon}_{B,t}^{long-run'} & \boldsymbol{\varepsilon}_{B,t}^{short-run} & \boldsymbol{\varepsilon}_{NB,t}^{residual} \\ & & \boldsymbol{\varepsilon}_{B,t}^{perm} & \boldsymbol{\varepsilon}_{NB,t}^{perm} \end{array}]$$
Aggregate Demand shock
Aggregate Supply shock

* Confounds business and non-business cycle shocks.

Barsky & Sims (2011) vs. Long-run TFP Shocks

- ► Long-run TFP shocks from Angeletos, Collard & Dellas (2020)
- Similar IRFs and business cycle volatility for macro variables.

Overview: Model Estimation Results

In light of the evidence where we have two categories of long-run TFP shocks:

- Benchmark medium-scale DSGE models have model misspecification
 - * Similar to SVAR literature, DSGE models allow for one category of long-run TFP shocks For instance, Smets & Wouters (2007)
 - * Full-information likelihood-based estimation of these models results in biased parameters
 - * Downward bias on business cycle implications of such models.
- **Solution**: Estimation in limited information setting
 - * Estimation of Smets & Wouters (2007) by IRF matching with the identified shocks.
- ► **Result**: Wage indexation and stickiness are key for propagation mechanism relative to price & investment frictions.

Demand Shock (short-run)

Note, 80 percent HPDI in brackets

Supply Shock (long-run)

- Explains significant volatility of Une, Y, h, I and C at both frequency bands.
- Explains only long-run fluctuations of TFP.
- Explains significant labor productivity (Y/h) fluctuations at both frequency bands.

Output Periodogram

Figure This figure shows an estimate of the spectral density of U.S. GDP per capita filtered for periodicity above 20 quarters.

Figure IRFs

Normative & Policy Implications

