Dissecting Business Cycles

Sanjay Moorjani

September 20, 2023

Motivation

▶ Goal: Relative role of long-run supply and short-run demand shocks in driving business cycles

- ✱ Identifying dynamic causal effects of business cycle shocks provides valuable insights into the internal propagation mechanism (amplification or persistence)
- ✱ Monetary authority faces policy trade-offs due to long-run supply-driven business cycles
- ✱ Literature has conflicting conclusions about the role of long-run supply-driven business cycles

Motivation

▶ Goal: Relative role of long-run supply and short-run demand shocks in driving business cycles

- ✱ Identifying dynamic causal effects of business cycle shocks provides valuable insights into the internal propagation mechanism (amplification or persistence)
- ✱ Monetary authority faces policy trade-offs due to long-run supply-driven business cycles
- ✱ Literature has conflicting conclusions about the role of long-run supply-driven business cycles
- **▶ Literature**: Identifies **long-run productivity** shocks ete **=====⇒ business-cycle GDP** fluctuations
- **This Paper**: Dissects GDP fluctuations to identify shocks that explain business-cycle volatility of GDP

Identified business-cycle shocks $\xrightarrow{\mathrm{evaluate}}$ long-run productivity fluctuations

But why a new approach?

Allows for **two** categories of long-run productivity shocks. One causes business cycles and the other doesn't.

▶ Literature: Identifies **long-run productivity** shocks ete **=====⇒ business-cycle GDP** fluctuations

Q: Does an average aggregate long-run TFP shock drive business cycles?

- ✱ **Two assumptions**:
	- 1. Long-run TFP shocks are exogenous
	- 2. There exists only one category of long-run productivity shock

▶ This Paper: Identifies business-cycle shocks $\stackrel{evaluate}{=\!\!=\!\!=\!\!=\!\!=}$ long-run productivity fluctuations

But why a new approach?

Allows for **two** categories of long-run productivity shocks. One causes business cycles and the other doesn't.

▶ Literature: Identifies **long-run productivity** shocks ete **=====⇒ business-cycle GDP** fluctuations

Q: Does an average aggregate long-run TFP shock drive business cycles?

- ✱ **Two assumptions**:
	- 1. Long-run TFP shocks are exogenous
	- 2. There exists only one category of long-run productivity shock
- ▶ This Paper: Identifies business-cycle shocks $\stackrel{evaluate}{=\!\!=\!\!=\!\!=\!\!=}$ long-run productivity fluctuations

Q: Does there exist any subset of long-run TFP shocks that may drive business cycles?

- ✱ Weakens assumption **2**. Allows for two categories of long-run productivity shocks
- ✱ Assumption **1** holds. Avoids reverse causality

Business Cycle Shocks

- **▶ ACD: Angeletos, Collard & Dellas (2020)**:
	- * Argue non-inflationary demand shocks drive business cycles.
	- ✱ Extract a shock that explains maximum business cycle volatility of real per capita GDP.
- **▶ Key Assumption:** Business cycles have a dynamic factor structure and there's one factor.
	- ✱ In other words, single shock drives business cycles.
	- ✱ **MBC** shock: 1st principal component

Business Cycle Shocks

- **▶ ACD: Angeletos, Collard & Dellas (2020)**:
	- * Argue non-inflationary demand shocks drive business cycles.
	- ✱ Extract a shock that explains maximum business cycle volatility of real per capita GDP.
- **▶ Key Assumption:** Business cycles have a dynamic factor structure and there's one factor.
	- ✱ In other words, single shock drives business cycles.
	- ✱ **MBC** shock: 1st principal component
- **▶** I test this key assumption on the number of dynamic factors.
	- ✱ There are two factors.
	- ✱ Separate them using a hypothesis, some of these shocks have long-run implications and some don't.
	- ✱ Based on empirical results, I interpret the two shocks as supply and demand shocks.

Number of Dynamic Factors?

Figure Scree Plot

▶ This Paper: The MBC shock is a linear combination of supply and demand shocks

Overview: Results

Using a novel SVAR identification strategy to dissect business cycle fluctuations:

- **▶ Yes**, a significant fraction of long-run TFP shocks drive business cycles
- **▶ Sources of Business Cycle Fluctuations**:
	- ✱ Identify two business cycle shocks, a short-run and a long-run shock
	- ✱ Further identified as a long-run **supply shock** and a short-run **demand shock** based on conditional correlations of macro variables

Overview: Results

Using a novel SVAR identification strategy to dissect business cycle fluctuations:

- **▶ Yes**, a significant fraction of long-run TFP shocks drive business cycles
- **▶ Sources of Business Cycle Fluctuations**:
	- ✱ Identify two business cycle shocks, a short-run and a long-run shock
	- ✱ Further identified as a long-run **supply shock** and a short-run **demand shock** based on conditional correlations of macro variables
- **▶** Also a **second** category of long-run TFP shocks that don't drive business cycles
	- ✱ Leads to biased parameters of DSGE models estimated in a full information setting
	- ✱ Significant **normative** & **policy** implications
	- ✱ **Solution**: Estimation via IRF matching with the identified business cycle shocks

Literature Review

▶ SVAR Identification (Technology Shocks):

Blanchard & Quah (1989); Gali (1999); Basu, Fernald & Kimball (2006); Beaudry & Portier (2006); Barsky & Sims (2011); Francis et al. (2014); Barsky, Basu & Lee (2014); Chahrour & Jurado (2018); Angeletos, Collard & Dellas (2020); Kurmann & Sims (2022); Chahrour, Chugh & Potter (2022);

- ✱ Conflicting conclusions about the role of long-run TFP shocks
- ✱ Argue for (non-inflationary) demand shocks as the key driver of business cycles.

▶ Limited Information Estimation:

Rotemberg & Woodford (1997), Christiano, Eichenbaum & Evans (2005), Barnichon & Mesters (2020), Lewis & Mertens (2023)

✱ Identify macro equations through structural shocks

Outline

- 1. Identification Setup
- 2. Results
- 3. Model Estimation Challenges
- 4. Application: Smets & Wouters (2007)

Empirical Analysis

Baseline VAR

▶ Data follows the benchmark VAR of ACD (2020):

- ✱ Quarterly U.S data: 1955Q1-2019Q4
- ✱ **Macro Quantities**: Unemployment, GDP, Hours, Invest. (inclusive of durables), Cons.
- ✱ **Productivity**: util-adjust TFP, NFB labor productivity;
- ✱ **Nominal**: Inflation (GDP Delator), Federal Fund Rate, Labor Share
- ✱ Bayesian VAR, 2 Lags

▶ Wold Representation:

 $Y_t = D(L)Q\epsilon_t$

where, ε_t are structural shocks.

Identification

- **▶ B**: Linear combination of the VAR residuals that explain significant volatility of **GDP** at the business-cycle frequencies, 6-32 quarters
- ▶ $\epsilon_{B,t}^{short-run}$: Business cycle shocks that don't contribute to long-run volatility of GDP
- **▶** Following ACD (2020), **long-run** refers to fluctuations of periodicity >20 years
- **▶** ε^{*long–run*}: Residual business cycle shocks
- **▶** Structural assumptions consistent with the literature.

 q_{lr}^* , $q_{sr}^* \equiv \arg\max_{q_{lr},q_{sr}} q_{lr'}$ 'D $\bigg($ GDP, 2π 32 , 2π 6 $\int q_{lr} + q_{sr}' \mathcal{D} \Big(GDP,$ 2π 32 , 2π 6 $\bigg)q_{\textit{sr}}$ **−** qsr **′**D GDP, 2π ∞ , $\left(\frac{2\pi}{80}\right)q_{sr}$ s.t. $q'_{lr}q_{lr} = 1$, $q'_{sr}q_{sr} = 1$, $q'_{lr}q_{sr} = 0$

▶ Identify two orthogonal shocks q_{lr}^* and q_{sr}^* sr

Identification Setup [Definition](#page-51-0) [BQ 1989](#page-57-0)

$$
q_{lr}^{*}, q_{sr}^{*} \equiv \arg \max_{q_{lr}, q_{sr}} q_{lr}' D \left(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \right) q_{lr} + q_{sr}' D \left(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \right) q_{sr}
$$

$$
- q_{sr}' D \left(GDP, \frac{2\pi}{\infty}, \frac{2\pi}{80} \right) q_{sr}
$$
s.t. $q_{lr}' q_{lr} = 1, q_{sr}' q_{sr} = 1, q_{lr}' q_{sr} = 0$

- ▶ Identify two orthogonal shocks q_{lr}^* and q_{sr}^* sr
- ▶ Both together explain the maximum volatility of real per capita GDP at business cycle frequency

$$
q_{lr}^{*}, q_{sr}^{*} \equiv \arg \max_{q_{lr}, q_{sr}} q_{lr}' D \left(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \right) q_{lr} + q_{sr}' D \left(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \right) q_{sr}
$$

$$
- q_{sr}' D \left(GDP, \frac{2\pi}{\infty}, \frac{2\pi}{80} \right) q_{sr}
$$
s.t. $q_{lr}' q_{lr} = 1, q_{sr}' q_{sr} = 1, q_{lr}' q_{sr} = 0$

- ▶ Identify two orthogonal shocks q_{lr}^* and q_{sr}^* sr
- ▶ Both together explain the maximum volatility of real per capita GDP at business cycle frequency
- ▶ Penalize q_{sr}^{*} for explaining long-run volatility of GDP

$$
q_{lr}^{*}, q_{sr}^{*} \equiv \arg \max_{q_{lr}, q_{sr}} q_{lr}' D \left(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \right) q_{lr} + q_{sr}' D \left(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \right) q_{sr}
$$

$$
- q_{sr}' D \left(GDP, \frac{2\pi}{\infty}, \frac{2\pi}{80} \right) q_{sr}
$$
s.t. $q_{lr}' q_{lr} = 1, q_{sr}' q_{sr} = 1, q_{lr}' q_{sr} = 0$

- ▶ Identify two orthogonal shocks q_{lr}^* and q_{sr}^* sr
- **▶** Both together explain the maximum volatility of real per capita GDP at business cycle frequency
- ▶ Penalize q_{sr}^{*} for explaining long-run volatility of GDP
- **▶** Results robust to long-run restrictions via labor productivity, TFP, Consumption

$$
q_{lr}^{*}, q_{sr}^{*} \equiv \arg \max_{q_{lr}, q_{sr}} q_{lr}' D \left(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \right) q_{lr} + q_{sr}' D \left(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \right) q_{sr}
$$

$$
- q_{sr}' D \left(GDP, \frac{2\pi}{\infty}, \frac{2\pi}{80} \right) q_{sr}
$$
s.t. $q_{lr}' q_{lr} = 1, q_{sr}' q_{sr} = 1, q_{lr}' q_{sr} = 0$

- ▶ Identify two orthogonal shocks q_{lr}^* and q_{sr}^* sr
- **▶** Both together explain the maximum volatility of real per capita GDP at business cycle frequency
- ▶ Penalize q_{sr}^{*} for explaining long-run volatility of GDP
- **▶** Results robust to long-run restrictions via labor productivity, TFP, Consumption
- ▶ Key: Not rewarding q_{lr}^* for explaining long-run TFP movements

 \blacktriangleright **MBC** shock (q_1): principal component analysis

max $\max_{q_1, q_2} q'_1 A q_1 + q'_2 A q_2$

s.t.
$$
q'_1q_1 = 1, q'_2q_1 = 1, q'_2q_1 = 0
$$

This paper: extrema of sums of heterogeneous quadratic forms $(A \neq B)$

max $\max_{q_1, q_2} q'_1 A q_1 + q'_2 B q_2$

s.t.
$$
q'_1q_1 = 1, q'_2q_1 = 1, q'_2q_1 = 0
$$

▶ Existence & Uniqueness: Bolla, M., Michaletzky, G., Tusnády, G., Ziermann, M. (1998)

▶ Convergence Algorithm: Jiang & Dai (2014)

Business Cycle Co-movement

▶ Volatility contribution at business-cycle frequency band (6-32 quarters):

NOTE. 80 percent HPDI in brackets

TFP, Inflation & Interest Rates

▶ Supply shock (TFP) **[↑] ⁼[⇒]** GDP **[↑] ⁼[⇒]** inflation **[↓] ======⇒** nominal rates **↓** Taylor Rule

▶ Demand shock [↑] ⁼[⇒] GDP **[↑] ⁼[⇒]** inflation **[↑] ======⇒** nominal rates **↑** Taylor Rule

TFP, Inflation & Interest Rates [1.1](#page-55-0)

NOTE. 80 percent HPDI in brackets

TFP, Inflation & Interest Rates [1.1](#page-55-0)

NOTE. 80 percent HPDI in brackets

▶ The MBC shock is a linear combination of long-run supply and short-run demand shocks

TFP, Inflation & Interest Rates [1.1](#page-55-0)

NOTE. 80 percent HPDI in brackets

▶ The **MBC** shock is a linear combination of long-run supply and short-run demand shocks ▶ Also evidence for significant long-run TFP shocks that don't drive business cycles

Limited Information Estimation

Smets & Wouters (2007)

▶ Using a **Bayesian likelihood** approach, estimate a medium-scale **DSGE** model to investigate:

- ✱ Relative empirical importance of the various frictions
- ✱ Sources of business cycle fluctuations
- ✱ Policy analysis

▶ Components:

- 1. Adjustment costs for investment
- 2. Capacity utilization costs
- 3. Habit persistence
- 4. Price & wage indexation and nominal rigidities
- 5. Seven structural shocks (one long-run, six short-run)

▶ Seven Observables: GDP, Consumption, Investment, Wages, Hours Worked, Inflation, FFR

Smets & Wouters (2007)

▶ Using a **Bayesian likelihood** approach, estimate a medium-scale **DSGE** model to investigate:

- ✱ Relative empirical importance of the various frictions
- ✱ Sources of business cycle fluctuations
- ✱ Policy analysis

▶ Components:

- 1. Adjustment costs for investment
- 2. Capacity utilization costs
- 3. Habit persistence
- 4. Price & wage indexation and nominal rigidities
- 5. Seven structural shocks (one long-run, six short-run)

▶ Seven Observables: GDP, Consumption, Investment, Wages, Hours Worked, Inflation, FFR

▶ This Paper: Estimates parameters via IRF matching

Dissecting Smets-Wouters Observables

▶ Conclusions from empirical analysis section hold

Volatility Contributions

Supply Shock: SW Long-run TFP Shock

Demand Shock: SW Risk Premia Shock

Supply Shock: SW Long-run TFP Shock

Normative & Policy Implications

▶ Policy trade-offs in IRF matching estimated model.

Estimation Challenges

Full Information Estimation Challenges

In the following section,

- **▶** I argue for downward bias in business cycle implications of **DSGE** models estimated using Bayesian likelihood:
	- 1. DSGE models have cross-frequency restrictions
	- 2. Presence of long-run Non-Business Cycle shocks result in downward bias

Spectral Representation of DSGE Model

▶ Canonical representation of the DSGE model:

 $\Gamma_0 S_t = \Gamma_1 S_{t-1} + \Psi Z_t + \Pi \zeta_t$

 \mathbf{S}_t : Endogenous Variables, \mathbf{Z}_t : Exogenous Shocks, ζ_t : Expectational shocks

 \blacktriangleright Assuming a state-space representation and maping to observables \mathbf{Y}_t :

 $S_t = \Theta_1 S_{t-1} + \Theta_0 \Psi Z_t$

 $Y_t = A(L)S_t = A(L)(I - \Theta_1 L)^{-1} \Theta_0 \Psi Z_t = \mathbf{D}(L; \theta) \mathbf{\Theta}_0(\theta) \Psi(\theta_1) Z_t$

θ: model parameters, $θ_1$: shock standard deviations

Spectral Representation of DSGE Model

▶ Canonical representation of the DSGE model:

 $\Gamma_0 S_t = \Gamma_1 S_{t-1} + \Psi Z_t + \Pi \zeta_t$

 \mathbf{S}_t : Endogenous Variables, \mathbf{Z}_t : Exogenous Shocks, ζ_t : Expectational shocks

 \blacktriangleright Assuming a state-space representation and maping to observables \mathbf{Y}_t :

 $S_t = \Theta_1 S_{t-1} + \Theta_0 \Psi Z_t$

 $Y_t = A(L)S_t = A(L)(I - \Theta_1 L)^{-1} \Theta_0 \Psi Z_t = \mathbf{D}(L; \theta) \mathbf{\Theta}_0(\theta) \Psi(\theta_1) Z_t$

θ: model parameters, $θ_1$: shock standard deviations

▶ Model implied Spectral Density of variable **k** due to shock **l** in Y_t:

$$
\mathcal{SD}(\omega, k, l; \theta, \theta_1) = \frac{1}{2\pi} \left| \mathcal{M}(\omega, y_k, l; \theta) \right|^2 \sigma_l^2, \quad \text{where} \quad \mathcal{M}(\omega, y_k, l; \theta) = \mathbf{D}^k(e^{i\omega}; \theta) \mathbf{\Theta}_0^l(\theta)
$$

Likelihood Function of DSGE Models [Application](#page-47-0)

-
- **▶** The log-likelihood function of the state space model in frequency domain (Harvey 1989)

$$
\log L(\theta, \theta_1) = -\sum_{j=1}^T \left(\log \frac{1}{2\pi} \left| \mathcal{M}(\omega_j, y_k, \ell B; \theta) \right|^2 \sigma_{\ell B}^2 + \frac{I(\omega_j, y_k)}{\frac{1}{2\pi} \left| \mathcal{M}(\omega_j, y_k, \ell B; \theta) \right|^2 \sigma_{\ell B}^2} \right)
$$

Likelihood Function of DSGE Models

▶ The log-likelihood function of the state space model in frequency domain (Harvey 1989)

$$
\log L(\theta, \theta_1) = -\sum_{j=1}^T \left(\log \frac{1}{2\pi} \left| \mathcal{M}(\omega_j, y_k, \ell B; \theta) \right|^2 \sigma_{\ell B}^2 + \frac{I(\omega_j, y_k)}{\frac{1}{2\pi} \left| \mathcal{M}(\omega_j, y_k, \ell B; \theta) \right|^2 \sigma_{\ell B}^2} \right)
$$

▶ Maximising log L with respect to σ_{IB}^2 gives:

$$
\tilde{\sigma}_{IB}^2(\theta) = \frac{2\pi}{T} \sum_{j=1}^T \frac{I(\omega_j, y_k)}{|\mathcal{M}(\omega_j, y_k, IB; \theta)|^2} = \frac{2\pi}{T} S(\theta)
$$

▶ Reducing the maximize log L objective to **minimising**

$$
S(\theta) = \sum_{j=1}^{t} \frac{I(\omega_j, y_k)}{|\mathcal{M}(\omega_j, y_k, \mathcal{B}; \theta)|^2} + \sum_{j=t+1}^{T} \frac{I(\omega_j, y_k)}{|\mathcal{M}(\omega_j, y_k, \mathcal{B}; \theta)|^2}
$$

▶ Simplifying objective function into long-run and short-run volatility:

$$
S(\theta) = \sum_{j=1}^{t} \frac{I(\omega_j, y_k)}{|\mathcal{M}(\omega_j, y_k, \ell B; \theta)|^2} + \sum_{j=t+1}^{T} \frac{I(\omega_j, y_k)}{|\mathcal{M}(\omega_j, y_k, \ell B; \theta)|^2}
$$

▶ Simplifying objective function into long-run and short-run volatility:

$$
S(\theta) = \sum_{j=1}^{t} \frac{I(\omega_j, y_k)}{|\mathcal{M}(\omega_j, y_k, \ell B; \theta)|^2} + \sum_{j=t+1}^{T} \frac{I(\omega_j, y_k)}{|\mathcal{M}(\omega_j, y_k, \ell B; \theta)|^2}
$$

▶ Data implied volatility:

$$
I(\omega_j, k) = \frac{1}{2\pi} \mathcal{D}(y_k, \omega_j, \mathcal{B}) \sigma_{\mathcal{B}}^2 + \frac{1}{2\pi} \mathcal{D}(y_k, \omega_j, \mathcal{B}) \sigma_{\mathcal{C}}^2
$$

▶ Cross-frequency Restriction: Kolmogorov result

$$
\underbrace{\sum_{j=1}^{t} \log \left| \mathcal{M}(\omega_j, y_k, \ell B; \theta) \right|^2}_{\text{long-run}} + \underbrace{\sum_{j=t+1}^{T} \log \left| \mathcal{M}(\omega_j, y_k, \ell B; \theta) \right|^2}_{\text{short-run}} = 0
$$

$$
\triangleright \text{ Suppose } \exists \theta^* \text{ s.t. } \mathcal{D}(y_k, \omega_j, \ell B) = \left| \mathcal{M}(\omega_j, y_k, \ell B; \theta^*) \right|^2 \forall \omega_j
$$

 \sim

$$
\triangleright \text{ Suppose } \exists \theta^* \text{ s.t. } \mathcal{D}(y_k, \omega_j, \ell B) = \left| \mathcal{M}(\omega_j, y_k, \ell B; \theta^*) \right|^2 \forall \omega_j
$$

$$
S(\theta) = \sum_{j=1}^{t} \frac{1}{2\pi} \frac{\mathcal{D}(y_k, \omega_j, lB)\sigma_{lB}^2 + \mathcal{D}(y_k, \omega_j, lNB)\sigma_{lNB}^2}{|\mathcal{M}(\omega_j, y_k, lB; \theta)|^2} + \sum_{j=t+1}^{T} \frac{1}{2\pi} \frac{\mathcal{D}(y_k, \omega_j, lB)\sigma_{lB}^2 + 0}{|\mathcal{M}(\omega_j, y_k, lB; \theta)|^2}
$$

$$
S(\theta^*) = \sum_{j=1}^{t} \frac{\sigma_{lB}^2}{2\pi} + \frac{\mathcal{D}(y_k, \omega_j, lNB)\sigma_{lNB}^2}{|\mathcal{M}(\omega_j, y_k, lB; \theta^*)|^2} + \sum_{j=t+1}^{T} \frac{\sigma_{lB}^2}{2\pi} = T\frac{\sigma_{lB}^2}{2\pi} + \sum_{j=1}^{t} \frac{\mathcal{D}(y_k, \omega_j, lNB)\sigma_{lNB}^2}{|\mathcal{M}(\omega_j, y_k, lB; \theta^*)|^2}
$$

$$
= \frac{T\sigma_{lB}^2}{2\pi} + \sum_{j=1}^{t} \frac{\mathcal{D}(y_k, \omega_j, lNB)\sigma_{lNB}^2}{|\mathcal{M}(\omega_j, y_k, lB; \theta^*)|^2}
$$

$$
= \frac{T\sigma_{lB}^2}{2\pi} + \sum_{j=1}^{t} \frac{\mathcal{D}(y_k, \omega_j, lNB)\sigma_{lNB}^2}{|\mathcal{M}(\omega_j, y_k, lB; \theta^*)|^2}
$$

Downward Bias for Business Cycles

- **▶** θ changes such that model implied long-run volatility increases, resulting in a **downward bias** on short-run volatility of the model
- **▶** Argues for estimation in a limited information setting

Demand Shock: SW Risk Premia Shock

Internal vs. External Propagation [Theory](#page-39-0)

 \triangleright Replaced likelihood estimated σ_{RP} (0.1762) with IRF matched estimation (0.0131)

Internal vs. External Propagation

▶ Additionally replaced likelihood estimated investment elasticity (8.0145) with IRF matching estimated (0.0145)

Conclusion

▶ Empirical Results:

- 1. Both long-run supply and short-run demand shocks drive business cycles
- 2. DGP also comprises long-run shocks that don't contribute to business cycles

▶ Estimation Results:

- 1. Long-run non-business cycle shocks result in a downward bias in business cycle implications of DSGE models estimated in full-information setting
- 2. **Solution**: Estimation in limited information setting
	- $+$ For instance, estimation of Smets & Wouters (2007) by IRF matching with the identified shocks.

Appendix Slides

Representation

▶ Wold Representation:

 $Y_t = D(L)Q\epsilon_t$

▶ Spectral density of a variable y_j in Y_t in the frequency band $[\omega, \bar{\omega}]$ is represented as:

$$
\mathcal{D}(y_j, \underline{\omega}, \bar{\omega}) = \int_{\underline{\omega}}^{\bar{\omega}} \left(\overline{D^j \left(e^{-i\omega} \right)} D^j \left(e^{-i\omega} \right) \right) d\omega
$$

▶ For instance, spectral density of GDP in business-cycle frequency band (6-32 quarters):

$$
\mathcal{D}\left(\text{GDP},\frac{2\pi}{32},\frac{2\pi}{6}\right)
$$

Business Cycle Co-movement

▶ Volatility contribution at business-cycle frequency band (6-32 quarters):

NOTE. 68 percent HPDI in brackets

Check: 1

$$
q_{lr}, q_{sr} \equiv \arg \max_{q_{lr}, q_{sr}} q_{lr}{}'D \left(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \right) q_{lr} +
$$

$$
q_{sr}{}' \left(1.01 \ D \left(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \right) - D \left(TFP, \frac{2\pi}{\infty}, \frac{2\pi}{80} \right) \right) q_{sr}
$$
s.t. $q_{lr}'q_{lr} = 1, q_{sr}'q_{sr} = 1, q_{lr}'q_{sr} = 0$

Supply Shock IRFs

Figure IRFs

Check: 2 [TFP](#page-23-0)

$$
q_{lr}, q_{sr} \equiv \arg \max_{q_{lr}, q_{sr}} q_{lr}' D \left(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \right) q_{lr} +
$$

$$
q_{sr}' \left(1.1 \ D \left(GDP, \frac{2\pi}{32}, \frac{2\pi}{6} \right) - D \left(TFP, \frac{2\pi}{\infty}, \frac{2\pi}{80} \right) \right) q_{sr}
$$

s.t. $q_{lr}' q_{lr} = 1, q_{sr}' q_{sr} = 1, q_{lr}' q_{sr} = 0$

Supply Shock IRFs

Figure IRFs

Blanchard & Quah (1989) [Identification Setup](#page-15-0)

▶ Blanchard & Quah (1989):

- ✱ A bivariate VAR analysis of real GDP and unemployment.
- ✱ Zero long-run restriction: Only the aggregate supply shock has permanent effects on the level of real GDP.
- ✱ The residual orthogonal shock is interpreted as an aggregate demand shock.
- ✱ They argue aggregate demand shocks as a key driver of business cycles.

✱ Confounds business and non-business cycle shocks.

Barsky & Sims (2011) vs. Long-run TFP Shocks

▶ Long-run TFP shocks from Angeletos, Collard & Dellas (2020)

▶ Similar IRFs and business cycle volatility for macro variables.

Overview: Model Estimation Results

In light of the evidence where we have two categories of long-run TFP shocks:

- **▶** Benchmark medium-scale **DSGE** models have **model misspecification**
	- ✱ Similar to SVAR literature, DSGE models allow for one category of long-run TFP shocks For instance, Smets & Wouters (2007)
	- ✱ Full-information likelihood-based estimation of these models results in biased parameters
	- ✱ Downward bias on business cycle implications of such models.
- **▶ Solution**: Estimation in limited information setting
	- ✱ Estimation of Smets & Wouters (2007) by IRF matching with the identified shocks.
- **▶ Result**: Wage indexation and stickiness are key for propagation mechanism relative to price & investment frictions.

Demand Shock (short-run)

NOTE. 80 percent HPDI in brackets

Supply Shock (long-run)

- Explains significant volatility of Une, Y, h, I and C at both frequency bands.
- **▶** Explains only long-run fluctuations of TFP.
- ▶ Explains significant labor productivity (Y/h) fluctuations at both frequency bands.

Output Periodogram

Figure This figure shows an estimate of the spectral density of U.S. GDP per capita filtered for periodicity above 20 quarters.

[ACD](#page-5-0) (2020): MBC Shock ACD ACD ACD

Figure IRFs

Normative & Policy Implications

