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Motivation

> Goal: Relative role of long-run supply and short-run demand shocks in driving

business cycles
* Monetary authority faces due to long-run supply-driven business cycles
* SVAR literature has conclusions about the causal effects of long-run supply shocks
* DSGE literature has conclusions about the normative and policy implications of

long-run supply shocks
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Motivation

> Goal: Relative role of long-run supply and short-run demand shocks in driving

business cycles
* Monetary authority faces due to long-run supply-driven business cycles
* SVAR literature has conclusions about the causal effects of long-run supply shocks
* DSGE literature has conclusions about the normative and policy implications of

long-run supply shocks

. . . . evaluate . .
> Literature: Identifies long-run productivity shocks =———==> business-cycle GDP fluctuations

> This Paper: Dissects GDP fluctuations to identify shocks that explain business-cycle
volatility of GDP

. . evaluate . . .
Identified business-cycle shocks Rl long-run productivity fluctuations
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But why a new approach?

Allows for two categories of long-run productivity shocks. One causes business cycles

and the other doesn’t.

. . . . luat . .
> Literature: Identifies long-run productivity shocks == business-cycle GDP fluctuations

Q: Does an aggregate long-run TFP shock drive business cycles?
* Two assumptions:
1. Long-run TFP shocks are exogenous
2. There exists only one category of long-run productivity shock

. . . luat .. .
> This Paper: Identifies business-cycle shocks = long-run productivity fluctuations
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But why a new approach?

Allows for two categories of long-run productivity shocks. One causes business cycles

and the other doesn’t.

. . . . luat . .
> Literature: Identifies long-run productivity shocks == business-cycle GDP fluctuations

Q: Does an aggregate long-run TFP shock drive business cycles?

* Two assumptions:
1. Long-run TFP shocks are exogenous
2. There exists only one category of long-run productivity shock

. . . luat .. .
> This Paper: Identifies business-cycle shocks = long-run productivity fluctuations

Q: Does there of long-run TFP shocks that may drive business cycles?

* Relaxes assumption 2. Allows for two categories of long-run productivity shocks

* Assumption 1 holds. Avoids reverse causality
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Business Cycle Shocks

> ACD: Angeletos, Collard & Dellas (2020):
* Argue shocks drive business cycles. MBC

* Extract a shock that explains maximum business cycle volatility of real per capita GDP.

> Key Assumption: Business cycles have a dynamic factor structure and there’s one factor.

* |n other words, drives business cycles.
* MBC shock: 1st principal component
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Business Cycle Shocks

> ACD: Angeletos, Collard & Dellas (2020):

* Argue shocks drive business cycles. MBC
* Extract a shock that explains maximum business cycle volatility of real per capita GDP.

> Key Assumption: Business cycles have a dynamic factor structure and there’s one factor.

* |n other words, drives business cycles.
* MBC shock: 1st principal component

> | test this key assumption on the number of dynamic factors.

* There are factors.

* Separate them using a hypothesis, some of these shocks have long-run implications
and some don't.

* Based on empirical results, | interpret the two shocks as supply and demand shocks.
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Number of Dynamic Factors?

Figure Scree Plot
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Eigenvalues for a spectral matrix of GDP at business cycle frequency band.
Horizontal axis: Total principal components or eigenvalues.

> This Paper: The MBC shock is a of supply and demand shocks
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Overview: Results

Using a novel SVAR identification strategy to dissect business cycle fluctuations:
> , a significant fraction of long-run TFP shocks drive business cycles

> Identification of Dynamic Causal Effects
* |dentify two business cycle shocks, a short-run and a long-run shock
* Further identified as a long-run supply shock and a short-run demand shock based

on conditional correlations of macro variables
* A second category of long-run shocks that drive business cycles
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Overview: Results

Using a novel SVAR identification strategy to dissect business cycle fluctuations:
> , a significant fraction of long-run TFP shocks drive business cycles

> Identification of Dynamic Causal Effects
* |dentify two business cycle shocks, a short-run and a long-run shock

* Further identified as a long-run supply shock and a short-run demand shock based
on conditional correlations of macro variables
* A second category of long-run shocks that drive business cycles

> Identification of Model Parameters

* Theoretically argue non-business cycle fluctuations lead to biased parameters
of DSGE models estimated in a full information setting

* Significant normative & policy implications

* Solution: Estimation via IRF matching with the identified business cycle shocks
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Literature Review

> SVAR Identification (TFP Shocks):

Blanchard & Quah (1989); Gali (1999); Basu, Fernald & Kimball (2006);

; Barsky & Sims (2011); Francis et al. (2014); Barsky, Basu
& Lee (2014); ; Angeletos, Collard & Dellas (2020);
Kurmann & Sims (2022); ;

* Conflicting conclusions about the role of long-run TFP shocks
* Contribution: Relaxes the common assumption about one category of long-productivity shock

> Limited Information Estimation:

Rotemberg & Woodford (1997), Christiano, Eichenbaum & Evans (2005),
Barnichon & Mesters (2020), Lewis & Mertens (2023)

* Contribution: Argues for limited information estimation due to non-business cycle fluctuations
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Outline

1. Identification Setup
2. Results

3. Model Estimation Challenges

i

. Application: Smets & Wouters (2007)
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Empirical Analysis




Baseline VAR

> Data follows the benchmark VAR of ACD (2020):

* Quarterly U.S data: 1955Q1-2019Q4

* Macro Quantities: Unemployment, GDP, Hours, Invest. (inclusive of durables), Cons.

* Productivity: util-adjust TFP, NFB labor productivity;

*

Nominal: Inflation (GDP Delator), Federal Fund Rate, Labor Share
* Bayesian VAR, 2 Lags

> Wold Representation:
Yt = D(L)Qgt
where, &; are structural shocks.

Empirical Analysis



Identification

’ long—run short—run
g=[¢eg; gt ENB,t ]
N——
shocks shocks

> B: Linear combination of the VAR residuals that explain significant volatility of GDP
at the business-cycle frequencies, 6-32 quarters

short—run,

> Epy : Business cycle shocks that don't contribute to long-run volatility of GDP

> Following ACD (2020), long-run refers to fluctuations of periodicity >20 years

long—run

> £

: Residual business cycle shocks

» Structural assumptions consistent with the literature.

Empirical Analysis



Identification Setup octniion

% , 2m 2T , 2m 2T
qir,9sr =argmax g, D GDP, —=, — |q;-+ sy D{ GDP, o=, — | 95
r-9sr 32 6 3

s.t. q;rQIr =1, qgrer =1, qgrer =0

» Identify two orthogonal shocks q; and q:r
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Identification Setup octniion

% , 2m 2T , 2m 2T
qir,9sr =argmax g, D GDP, —=, — |q;-+ sy D{ GDP, o=, — | 95
r-9sr 32 6 3

s.t. QIrQIr 1, QSrQSr 1, QIrQSr— 0

> |dentify two orthogonal shocks q,’; and qs*r

» Both together explain the maximum volatility of real per capita GDP at business cycle

frequency
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Identification Setup octniion

% , 2m 2T , 2m 2T
qir,9sr =argmax g, D GDP, —=, — |q;-+ sy D{ GDP, o=, — | 95
r-9sr 32 6 3

’ ’ ’
st qir9r=1,959sr =1,9,,95, =0

> Identify two orthogonal shocks g, and q.,

> Both together explain the maximum volatility of real per capita GDP at business cycle
frequency

» Penalize q:r for explaining long-run volatility of GDP

Empirical Analysis



Identification Setup octniion

% , 2m 2T , 2m 2T
qir,9sr =argmax g, D GDP, —=, — |q;-+ sy D{ GDP, o=, — | 95
r-9sr 32 6 3

s.t. CHrer 1, QSrQSr 1, QIrQSr— 0

> Identify two orthogonal shocks g, and q.,

> Both together explain the maximum volatility of real per capita GDP at business cycle
frequency

> Penalize q;r for explaining long-run volatility of GDP

» Results robust to long-run restrictions via labor productivity, TFP, Consumption
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Identification Setup octniion

% , 2m 2T , 2m 2T
qir,9sr =argmax g, D GDP, —=, — |q;-+ sy D{ GDP, o=, — | 95
tr-Qsr 32 6 3

s.t. CHrer 1, QSrQSr 1, QIrQSr— 0

> Identify two orthogonal shocks g, and q.,

> Both together explain the maximum volatility of real per capita GDP at business cycle
frequency

> Penalize qs*r for explaining long-run volatility of GDP
> Results robust to long-run restrictions via labor productivity, TFP, Consumption
» Key: Not rewarding q; for explaining long-run TFP movements

Empirical Analysis



Business Cycle Co-movement

— Long-run shock  ---- Short-run shock

Unemployment Output Hours Worked Investment Consumption

> Volatility contribution at business-cycle frequency band (6-32 quarters):

Shock Unemployment Output Hours Work Investment Consumption
Long-run 339 56.6 30.8 43.8 32.8
[22.8, 46.4] [364,73.71 [22, 41.3] [27.4, 5911 [25.7, 40.2]
Short-run 46.8 421 39.4 4.3 23
(344, 57.7] [25.2, 63] [28.8, 48.3] [25.6, 57.7] [161,30.8]
Total 80.7 70.2 851 55.8

NoOTE. 80 percent HPDI in brackets

Empirical Analysis



TFP, Inflation & Interest Rates

—— Supply shock ---- Demand shock
TFP Inflation Nom. Int. Rate

10 20 30 40

Taylor Rul
» Supply shock (TFP) 1 = GDP 1 = inflation | 22— hominal rates !

. . Taylor Rule .
» Demand shock T = GDP 1 = inflation | =———= nominal rates 1

Empirical Analysis



TFP, Inflation & Interest Rates

—— Supply shock ---- Demand shock

TFP Inflation Nom. Int. Rate

10 20 30 40

TFP (6-32 Q) TFP (> 80Q) Inflation Nominal Int Rates
Supply Shock (long-run) 12.7 531 18.2 17.6
(5.9, 22.5] [287,713] [10.4, 28.4] [8.4,331]
Demand Shock (short-run) 8.3 0.23 11.7 52.5
[3,172.3] [0.03, 1.05] [5.8,19.8] [39.2, 621]

NOTE. 80 percent HPDI in brackets




TFP, Inflation & Interest Rates
—— Supply shock ---- Demand shock
TFP Inflation Nom. Int. Rate
10 20 30 40
TFP (6-32 Q) TFP (> 80Q) Inflation Nominal Int Rates
Supply Shock (long-run) 12.7 531 (26) 18.2 17.6
(5.9, 22.5] [287,71.3] [10.4, 28.4] [8.4, 331]
Demand Shock (short-run) 8.3 0.23 17 52.5 (17)
[3,17.3] [0.03, 1.05] [5.8,19.8] [39.2, 621]
NoTE. 80 percent HPDI in brackets
» The MBC shock is a of long-run supply and short-run demand shocks

Empirical Analysis



Non-Business Cycle Shocks

Shock Output TFP Investment Consumption
Supply (Long-run Volatility) 51.8 537 47.9 51.4
[26.7, 72.71 [29.4, 71.4] [22.4,70.2] [264, 71.9]
Demand (Long-run Volatility) 0.2 0.04 0.4 0415
[0.03,1] [0,0.2] [0.08, 1.9] [0.02, 0.8]
Total (Long-run Volatility) 53.74 48.3 51.55
Shock Output TFP Investment Consumption
Supply (Business Cycle Volatility) 56.6 13.7 43.8 32.8
[364,737] [6.5,23.7] [27.4, 5941 [25.7, 40.2]
Demand (Business Cycle Volatility) 421 7.4 0.3 23
[25.2, 63] [2.5, 15.6] [25.6, 57.7] [164, 30.8]
Total (Business Cycle Volatility) 211 851 55.8

> Two business cycle shocks combined explain:

* 98.7% of business cycle GDP volatility
* 52% of long-run GDP volatility
» Evidence for significant fraction of long-run shocks that

Empirical Analysis

drive business cycles



Application for Policy Analysis

timat
- SVAR identified conditional correlations ————— DSGE model parameters

: The trade-off between macro fit and structural accuracy for policy analysis

Empirical Analysis



Application for Policy Analysis

timat
- SVAR identified conditional correlations ————— DSGE model parameters

: The trade-off between macro fit and structural accuracy for policy analysis
Chari, Kehoe & McGrattan (2009) argue:
> New Keynesian models are not ready for quarter-to-quarter policy advice
> Due to the need for macro models to fit macro data well
» Inclusion of non-structural shocks and mechanisms to fit the macro data
> Resulting in a large number of parameters lacking consistency with microeconomic evidence

» They advocate for simpler models with fewer, well-motivated parameters based
on micro evidence

Empirical Analysis #18



Application for Policy Analysis

timat
. SVAR identified conditional correlations ———— DSGE model parameters

: The trade-off between macro fit and structural accuracy for policy analysis
Argue for parameter estimation using identified business cycle shocks in two ways:

1. Compare the normative & policy implications of the Smets-Wouter model estimated
under full-information and limited-information settings

2. Theoretically demonstrate that parameter estimates from full-information setting are
in the presence of non-business cycle shocks

Empirical Analysis



Smets & Wouters (2007)

> Using a Bayesian likelihood approach, estimate a medium-scale DSGE model to investigate:

* Relative empirical importance of the various frictions
* Sources of business cycle fluctuations
* Policy analysis

> Components:

1. Adjustment costs for investment

2. Capacity utilization costs

3. Habit persistence

4. Price & wage indexation and nominal rigidities
5. Seven structural shocks (3 supply, 4 demand)

> Seven Observables: GDP, Consumption, Investment, Wages, Hours Worked, Inflation, FFR

> This Paper: Estimates parameters via IRF matching

Limited Information



Dissecting Smets-Wouters Observables

—— Supply shock  ---- Demand shock

Output Hours Worked Investment Consumption

S

0.0 ------ 008 Femamirzzivzzecear
20 40 60 20 40 60 20 40 60 20 40 60
Inflation

» Conclusions from empirical analysis section hold

Limited Information



Volatility Contributions

Shock Output Hours Work Investment Consumption
Supply (Business Cycle Volatility) 57.3 23.8 43 26.8
[33.9, 76] [10.6, 364] [22.7, 60.3] [18.7,36.6]
Demand (Business Cycle Volatility) 425 307 38.4 17.9
[23.6, 65.7] [16, 45.6] [20.4, 59.8] [83,27.8]
Total (Business Cycle Volatility) 54.5 817 44.7
Supply (Long-run Volatility) 66.5 69.9 69.11 65
[36.9, 86.4] [44.8, 84.4] [40, 86.5] [34.9, 85.3]
Shock Inflation FFR Wages
Supply (Business Cycle Volatility) 223 15.3 19.8
[10.3,379] [63,309] [10.5,32.5]
Demand (Business Cycle Volatility) 8.3 .2 5.4
[34,21] [25.4, 53.6] [2.3,127]
Total (Business Cycle Volatility) 30.6 56.5 25.2
Supply (Long-run Volatility) 27.7 27.7 65.3
[11, 56] [13,51.7] (338, 85.2]

Limited Information



Supply Shock: SW Long-run TFP Shock

Output Investment , Consumption

SW Model: IRF
" Matching Estimated

——Empirical




Demand Shock: SW Risk Premia Shock

Output Investment Consumption

SW Model: IRF
" Matching Estimated

——Empirical




Supply Shock: SW Long-run TFP Shock

Output Investment , Consumption Hours

SW Model: IRF
" Matching Estimated

——Empirical

SW Model: Bayesian
" Likelihood Estimated




Normative & Policy Implications

Output Gap

Inflation

SW Model: IRF
" Matching Estimated
SW Model: Bayesian
T Likelihood Estimated

> Policy trade-offs in IRF matching estimated model.

Limited Information

5 10 15
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Full Information Estimation Challenges

> | argue for in business cycle implications of DSGE models estimated
using Bayesian likelihood:

1. DSGE models have cross-frequency restrictions

2. Presence of long-run Non-Business Cycle shocks result in downward bias

Estimation Challenges



Spectral Representation of DSGE Model
» Canonical representation of the DSGE model:
FOSt = |_'15t_1 + lIJZt- + nct

S;: Endogenous Variables, Z;: Exogenous Shocks, {;: Expectational shocks

> Assuming a state-space representation and maping to observables Y;:

Sl’ == Olst_l + OOU-'Zt

Yy =A(L)S; = A(L) (I— ©,L) " ©,WZ, = D(L; )@, (6)W(6,)Z;

6: model parameters, 6;: shock standard deviations

Estimation Challenges



Spectral Representation of DSGE Model
» Canonical representation of the DSGE model:
FOSt = |_'15t_1 + lIJZt- + nct

S;: Endogenous Variables, Z;: Exogenous Shocks, {;: Expectational shocks

> Assuming a state-space representation and maping to observables Y;:
Sl’ == @15t_1 + OOLIJZt
Yy =A(L)S; = A(L) (I— ©,L) " ©,WZ, = D(L; )@, (6)W(6,)Z;
6: model parameters, 6;: shock standard deviations

> Model implied Spectral Density of variable k due to shock Lin Y:

1 .
SD(W, k, 1,6, 61) = - IM(@, yi, b0)|° 0f,  where M(w, v, ; 6) = D*(e; 0)@4(6)
T

Estimation Challenges #29



Log-likelihood Maximization

> Harvey 1989: The log-likelihood maximization of the model can be reduced to minimizing

T I(w), yi) ‘ I(wj, yi)
s@)= > ’ 5+, : 5
j=t+1 |M(w,-, Y. B; 9)| j=1 ‘M(wj, Yk, B:0)

long-run volatility short-run volatility
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Log-likelihood Maximization

> Harvey 1989: The log-likelihood maximization of the model can be reduced to minimizing

T I(w), yi) ‘ I(wj, yi)
s@)= > ’ 5+, : 5
j=t+1 |M(w,-, Y. B; 9)| j=1 ‘M(wj, Yk, B:0)

long-run volatility short-run volatility

> Data implied volatility:

1 , 1 ,
Iwj, k) = ZTD()//@ wj, B)og + er(yk' wj, INB)Oj g

» Shock Standard Deviation: 5
.2 T
05(8) = ?5(9)

Estimation Challenges #30



Cross-Frequency Restrictions ad

> Harvey 1989: The log-likelihood maximization of the model can be reduced to minimizing

T I(wryk) L I(w,yk)
s@)= . >+ >
28 M@y B 0) 7T M), v B; )

long-run volatility short-run volatility

> Data implied volatility:

I(w;, k) ! D( B)o? ! D( INB)o?
w;, k)=— ,w;, B)og + — , Wi, o

J o Yk Wj BT on Yk Wj INB
> Cross-frequency Restriction: Kolmogorov result

Z Iog|M(w,yk,B e)( +Zlog |./\/l(w,)/k,3 0’ =0
Jj=t+1

long-run short-run

Estimation Challenges



Full Information Estimation Challenges

Theorem:
At Suppose 3 8" st. D(w;, yi, B) = M(w,, yx, B;6*) V¥ w; where je {1,2,---,T}
3 a vector of parameters (9*) such that model implied volatility due to €5 is equal to data

implied volatility of the business cycle shock at all frequencies w;.



Full Information Estimation Challenges

Theorem:
A1: Suppose 3 6" st D(w;, Yk, B) = M(w;, Y, B; 6™) v w; where je {1,2,---,T}

3 a vector of parameters (9*) such that model implied volatility due to €5 is equal to data

implied volatility of the business cycle shock at all frequencies w;.

D(W;, Y, B)+D(W;, Yy, INB )
A2: Suppose 3 6 st “ I DTN - \((w,y,, B;6) ¥ w) where j € {1,2, -+, T}

3 a vector of parameters (9’) such that model implied volatility due to a €g is equal to data
implied normalized volatility of both a business and non-business cycle shock



Full Information Estimation Challenges

Theorem:
A1: Suppose 3 6" st. D(w;, Yk, B) = M(w;, Y, B; 6*) Vv w; where je {1,2,---,T}
3 (6") €5
D(w;, Yk, B)+D(w;, Y, INB)x ,

A2: Suppose 3 6’ st. / kD(yk,B,ll\;B)k = M(wj, Yk, B; 6') v wj where j€ {1,2,---
3 Ch) =
A3: Z/T=t+1 D(wj,yk,lNB) ZjT=t+1 D(wj,yk,B)

DY ECCRIT) B VY 2 (A7%0)
€inB ~0 ~ 50%

€p

Estimation Challenges
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Full Information Estimation Challenges

Theorem:
A1: Suppose 3 6 st. D(w;, Yk, B) = M(w;, Y, B; 0*) Vv w; where je {1,2,---, T}

D(W;, Y, B)+D(W,, Y, INB ’ )
A2 Suppose 3 6 st DAY PPN _ \ (4, y,, B;0) V ) where j € {1,2, -+, T}

Aa: Sote1 D(@pyi IVB) _ Sesr D(w)yi.B)
3: t > t
Zj:l D(w/,yk,lNB) Zj:l D(wjlyk'B)

Under assumptions 1, 2 & 3, the minimization of S(8) is achieved at true parameters 0" if and
only if 012,\,5 =0.

Estimation Challenges #33



Downward Bias for Business Cycles

2 2 2
5(0) = T, 1 D(yk, wj, B)OE + Dy, wj, INB)OZNBJr £, 1 D(yy w), B)os+0
- 7 2 a7 2
jote1 2T |M((,o-,yk, B; e)( =12 ‘M(w-, Y. B; e))
long-run volatility short-run volatility
> minimize 5(6) T 2 restriction < 2
ole > M@y B o) 1 > My i Bi0)|
Jj=t+1 Jj=1
long-run short-run

> O changes such that model implied long-run volatility increases, resulting in
a downward bias on short-run volatility of the model

> Argues for estimation in a limited information setting

Estimation Challenges



Demand Shock: SW Risk Premia Shock

0.8

Output

Investment

Hours

Nominal Rates

Inflation

SW Model: IRF
" Matching Estimated
—— Empirical

SW Model: Bayesian
T Likelihood Estimated

30

40

Estimation Challenges



Internal vs. External Propagation

Output

Investment

Consumption

Hours

Nominal Rates

SW Model: Bayesian
T Likelihood Estimated

—— Empirical

> Replaced likelihood estimated 05, (0.1762) with IRF matched estimation (0.0131)

Estimation Challenges




Internal vs. External Propagation

Output Investment c i Hours

Nominal Rates Inflation Wages

SW Model: Bayesian
T Likelihood Estimated

2 |— Empirical
... ; LeT T T ORP :0.013
e K Invest. Elasticity: 0.0145
DR — 02f/
-0.05 -0.05 0.3
0 10 20 30 40 10 20 30 40 0 10 20 30 40

> Additionally replaced likelihood estimated investment elasticity (8.0145) with
IRF matching estimated (0.0145)

Estimation Challenges



Conclusion

> Empirical Results:

1. Both long-run supply and short-run demand shocks drive business cycles

2. DGP also comprises long-run shocks that don’t contribute to business cycles

> Estimation Results:

1. Long-run non-business cycle shocks result in a downward bias in business cycle
implications of DSGE models estimated in full-information setting

2. Solution: Estimation in limited information setting

+ For instance, estimation of Smets & Wouters (2007) by IRF matching with the identified shocks.

Estimation Challenges
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Representation

> Wold Representation:
Yt = D(L)Qgt
> Spectral density of a variable y; in Y; in the frequency band [w, W] is represented as:

w

()0 ()

D(yj, w, W) = J

w

» For instance, spectral density of GDP in business-cycle frequency band (6-32 quarters):

2m 2m
D(GDP, ——)
32 6

Estimation Challenges # 40



Business Cycle Co-movement

—— Supply shock =-==- Demand shock
Unemployment - Qutput Hours Worked 3 Investment Consumption
4 0.75
2 0.50 /‘_/"
A
17 0.25
\) -~
0s=mSemmenees rmeEs 0.00 4= = Famrmm e
D e
-1 =0.25
10 20 30 40 10 20 30 40

» Volatility contribution at business-cycle frequency band (6-32 quarters):

Unemployment Output hours Work Investment Consumption
Supply Shock 311 49.5 30 38.8 325
[20.7, 45.8] [30.5, 71.6] [20.5, 40.7] [23.4, 58] [24.7, 39.9]
Demand Shock 49.5 49 40.7 45.8 23.4
[35.4, 59.4] [26.3, 67.8] [28, 49.2] [26.4, 61.6] [15.7, 31.7]

NOTE. 68 percent HPDI in brackets

Estimation Challenges
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Check: 1

dir» 4sr = arg CI;TKJX Air

tr-9sr

, 2m
9., | 1.01 D|{ GDP, 326

(GDP

2m
)—D(TF
6

2T 2n)
32’ 6 qrrt+
2m 2m

Pp—, —
80

s.t. QIrqlr 1, qsrqsr =1, QIrqsr =0

)

Estimation Challenges



Supply Shock IRFs

Figure IRFs

I:lll2E!Jncmplo:,'mcm (36,38) - Output (64,43) Hours Worked (28,17) Investment (52,41) Consumption (32,42)
0.00
-0.25
= 020 30 440 0 2 30 40 020 3 40 0w 2 30 440 020 30 40
Loans (23,36) TFP (10,42) U.INUHL Int. Rate (11,13) Labor Prod. (36,42) - Inflation (16,13)

Estimation Challenges



Check: 2

dir» 4sr = arg CI;TKJX Air

, T 2T 21 27
ger (1.1 D{GDP, —, — |—D TFP— —
32 6

s.t. QIrqlr

lre

2

32" 6

sr

80

1, C75r675r =1, QIrqsr =0

2T 2T
(GDP )qU

)

Estimation Challenges
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Supply Shock IRFs

Figure IRFs

02_[111@|np!0yme|1l (28,33) Output (45,54) Hours Worked (27,21) Investment (34,50) 5l Consumption (31,54)
/"\___ 05 2
05 /\’ f\’_ 0.5/—/
00w o ow 10 20 30 40 020 30 4 0 20 30 40 0 20 30 40
TFP (16,56) Labor Prod. (33,58) 0_Lalmrshal‘c(25,4¢1] ol Inflation (20,15) Nom. Int. Rate (23,18)
L3 .
05 05
\_,.ﬁ-"'—"'--..____ \/—_ 0.0 -=gf=--nnmm e
0.0 ..................... OIU.A..‘.....AA..‘..A... 05
10 20 30 40 0 20 30 4 10 2 30
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Blanchard & Quah (1989)

» Blanchard & Quah (1989):

* A bivariate VAR analysis of real GDP and unemployment.

* : Only the aggregate supply shock has permanent effects on the level of
real GDP.
* The residual orthogonal shock is interpreted as an aggregate demand shock.
* They argue shocks as a key driver of business cycles.
’_ long—run’ short—run residual perm perm
g=[¢g; €B,t ENB, t &gt Evgt ]
Aggregate Demand shock Aggregate Supply shock
* business and non-business cycle shocks.
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Barsky & Sims (2011) vs. Long-run TFP Shocks Los s 3

— B&Sshock  ---- Long-run TFP shock

Unemployment (20,10) i Output (22,24) DsuHoursWorked(ﬁ,&) Investment (23,23) MSCOnsumpunn(lfl.l?}

0 20 3 4 10 20 30 40 0 20 30 40 0 20 30 40
Loans (30,15) ors TFP (8,17) olNom.lnLRata(S.ﬁ) l0L,an.borProti.tl.‘3,25] o1 Inflation (14,15)

05‘ .
00+ -0l

» Long-run TFP shocks from Angeletos, Collard & Dellas (2020)
> Similar IRFs and business cycle volatility for macro variables.
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Overview: Model Estimation Results

In light of the evidence where we have two categories of long-run TFP shocks:

» Benchmark medium-scale DSGE models have

* Similar to SVAR literature, DSGE models allow for one category of long-run TFP shocks
For instance, Smets & Wouters (2007)

* Full-information likelihood-based estimation of these models results in biased parameters
* on business cycle implications of such models.

» Solution: Estimation in limited information setting
* Estimation of Smets & Wouters (2007) by IRF matching with the identified shocks.

> Result: Wage indexation and stickiness are key for propagation mechanism
relative to price & investment frictions.
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Demand Shock (short-run)

MLlneanplnynmnl (49,5) Output (46,0.21) Hours Worked (41,2.3) Investment (44,0.4) Consumption (23,0.15)
: 025
0.00
0
-0.25
5010 15 0 5 10 15 0 5 10 15 X 5 010 15 0 5 10 15 0
TFP (7,0.04) Labor Prod, (23,0.04) Lahor Share (17,1.1) Inflation (11,4)
05 025 010
0.0 pufEsiEs -
ﬁ 00
-0.2

NOTE. 80 percent HPDI in brackets
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Supply Shock (long-run)

MUumnploymmlt (32,36) Output (53,52) Hours Worked (30,21) Investment (41,48) i OCL)nsumpliDn (33,51)
e 10 :
............ . 05 2
0.00\/‘-‘”— 0 /\_/_ /\_,— 0'5/_/-
-0.25
PSS T LT T T, o
050 0.0 *sssmsemsssnasasnnaes
0 40 60 m 40 60 0 40 60 0 40 60 0 4 6
TFP (14,54) Labor Prod. (37,54) D_Lalno:'shar(‘(.'iﬂ,ﬂl b Inflation (19,14) Nom. Int. Rate (19,16)
] 3
0,50
0.5
0.25\/_\‘\_ \/—h 00/-\-_- 0.0 -
(] T T T PE T R TR T, P
. . . , . =05 ; i

> Explains significant volatility of Une, Y, h, | and C at both frequency bands.
> Explains only long-run fluctuations of TFP.
> Explains significant labor productivity (Y/h) fluctuations at both frequency bands.
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Output Periodogram

Output
100 -
‘ High-Pass Filtered Data
80
60
40 -
20 -
0 1 L ]
4 6 24 32 40 50 60 100 150 200
Periodicity

Figure This figure shows an estimate of the spectral density of U.S. GDP per capita filtered
for periodicity above 20 quarters.
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ACD (2020): MBC Shock

Figure IRFs

Unemployment (56,26)
0.25 poym

Output (80,28) Hours Worked (45,16)

TFP (4,26) Labor Prod. (41,18) 0 Labor share (41,27)
.0
0.4 0.50
02 /\ 0.25
00 ..................... 0.00 _____________________
10 20 30 40 10 20 30 40

Investment (67,25)

10 20 30 40
Inflation (11,9.5)

Consumption (33,27)

1020 30 40
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Normative & Policy Implications

04 Output Gap . Investment Gap 04 Consumption Gap
05
0
-0.5
-1
0 5 10 15 20
Hours Gap Inflation

0.4

SW Model: Bayesian
" Likelihood Estimation

SW Model : IRF
" Matching Estimation
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Identification Setup @

» MBC shock (q1): principal component analysis

/ /7
maxq;Agi + q2Aq;
91,43

st.g191=1,459,=1,95G; =0
> This paper: extrema of sums of heterogeneous quadratic forms (A # B)

/ /
maxqgi;Aqg; + g;64;3
91,92

st.g191=1,92g1 =1,459; =0
> Existence & Uniqueness: Bolla, M., Michaletzky, G., Tusnady, G., Ziermann, M. (1998)

> Convergence Algorithm: Jiang & Dai (2014)
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Spectral Representation of DSGE Model
» Canonical representation of the DSGE model:
FOSt = |_'15t_1 + lIJZt- + nct

S;: Endogenous Variables, Z;: Exogenous Shocks, {;: Expectational shocks

> Assuming a state-space representation and maping to observables Y;:

Sl’ == Olst_l + OOU-'Zt

Yy =A(L)S; = A(L) (I— ©,L) " ©,WZ, = D(L; )@, (6)W(6,)Z;

6: model parameters, 6;: shock standard deviations
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Spectral Representation of DSGE Model
» Canonical representation of the DSGE model:
FOSt = |_'15t_1 + lIJZt- + nct

S;: Endogenous Variables, Z;: Exogenous Shocks, {;: Expectational shocks

> Assuming a state-space representation and maping to observables Y;:
Sl’ == @15t_1 + OOLIJZt
Yy =A(L)S; = A(L) (I— ©,L) " ©,WZ, = D(L; )@, (6)W(6,)Z;
6: model parameters, 6;: shock standard deviations

> Model implied Spectral Density of variable k due to shock Lin Y:

1 .
SD(W, k, 1,6, 61) = - IM(@, yi, b0)|° 0f,  where M(w, v, ; 6) = D*(e; 0)@4(6)
T
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Likelihood Function of DSGE Models

> Harvey 1989: The log-likelihood function of the state space model in frequency domain

L 2 I(wj, i)
logL(6,6,)=—>"|lo ‘M(wj,yk,B:G)‘ of + .
21

2 5
=1 Y. B;0)| o
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Likelihood Function of DSGE Models

> Harvey 1989: The log-likelihood function of the state space model in frequency domain

i 2 5 I(w;j, yi)

logL (6, 6,) ‘M(wj,yk,B;G)‘ o + _
2T 2
WY, B;0)| O

j=1

> Maximising log L with respect to 052; gives:

; 2m & I(w;, yi) 2m
HOEESDY 5 ="5(6)
=1 | M@, v, B: 6)

> Reducing the maximize log L objective to minimising

t I(wj, Yi) LA I(w), i)
s@=>" ! S+ . ’ 5
= |M(wj')/k,5;9)‘ =1 | M(), yy, B; 0)

long-run volatility short-run volatility
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Cross-Frequency Restrictions

> Simplifying objective function into long-run and short-run volatility:

£ I(O.),_yk) T I((A),yk)
JOEDS 5+ >
j=1 |M(wj,yk,8; 9)‘ j=t+1 ‘M(wj, Yk, B; 0)

long-run volatility short-run volatility
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Cross-Frequency Restrictions

> Simplifying objective function into long-run and short-run volatility:

£ I(O.),_yk) T I((A),yk)
JOEDS 5+ >
j=1 |M(wj,yk,8; 9)‘ j=t+1 ‘M(wj, Yk, B; 0)

long-run volatility short-run volatility

> Data implied volatility:

I( I<) = —1 D( B) 24 —1 D( INB) 2
Wi, , wW;, B)o , Wi, o

fi > Yk fi B 2 Yk J INB
> Cross-frequency Restriction: Kolmogorov result

t T
> log ‘M(wj, Y, B; 9))2 + > log |M(wj, Vi, B; 6) 0
j=1 j=t+1

long-run short-run
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Cross-Frequency Restrictions

2
> Suppose 3 67 s.t. D(yy, wj, B) = ‘M(wj, Y, B 9*)| vV w;

2 2
D(Yk, wj, B)og + D(Yk, wj, INB)Ojp

t
1
JORDIT >
j=1 ’M(wj, Yk B; 9)‘

2
j=t+1 2m ‘M(wj, Y. B;0)

long-run volatility

short-run volatility
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Cross-Frequency Restrictions

D
2
> Suppose 3 67 s.t. D(yy, wj, B) = ‘M(wj, Y, B 9*)| VY w;
2 2
so) = £ 1 Dy, wj, BYOE + Dy, wj, INB)OT 5 1 D(yy, wj, B)OS + 0
L5 2 S5 2
j=12m M@ v, B: 0)| 261 2T M@y v B:0)
long-run volatility

short-run volatility

t 2 2
D(yy, wi, INB)O
5(6%) Z 23 (Y wj )OnB
-1

2 2
+ Z “B _ T& + Zt: D(yk' wj' [NB)UINB
*.|2 X 2T - 2T |2
)M(wj, Y. B; 6 )| j=t+1 j=1 |M(wj, Y, B;07)
~—_—
long-run volatility short-run volatility

> Minimizes S(6) to T% for true parameter (6™) values if oz = 0
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Downward Bias for Business Cycles

2 2 2
5(9)_Zt: 1 D(yk, wj, B)05 + Dy, wj, INB)ojyg & 1 Dy wj, B)oz + 0
—Zi5- 2 a7 2
&n M),y 5:6) 261 2T M@, vy B 6)
long-run volatility short-run volatility
> minimize 5(6) t 2 restriction 2
Ot DM v Bi0) 1 > M@ yi B:0)| )
j=1 j=t+1
long-run short-run

> O changes such that model implied long-run volatility increases, resulting in
a downward bias on short-run volatility of the model

> Argues for estimation in a limited information setting
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Estimated Parameters

Parameter Description IRF Matching Bayesian Likelihood

Pga Feedback TFP on exogenous spending 0.9905 0.2272

100 (,8_1 — 1) time preference rate in percent 1.7162 0.1239
a capital share 0178 0.2079

] capacity utilization cost 0.9658 0.6723

S investment adjustment cost 0.0145 8.0415

fo8 risk aversion 1.5866 1.3295

A external habit degree 0.6084 0.8789

S fixed cost share 1 1.4888

Indexation to past wages
Ew Calvo parameter wages
Indexation to past prices
Ep Calvo parameter prices
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Estimated Parameters

Parameter Description IRF Matching Bayesian Likelihood
0, Frisch elasticity 0.25 2.2934
o= Taylor rule inflation feedback 1 1.7822

Iay Taylor rule output growth feedback 0.3835 0.0010
ry Taylor rule output level feedback 0.064 0.1907
Jo} interest rate persistence 0.7522 0.8283
Pa persistence productivity shock 0.9974 0.9975
Pb persistence risk premium shock 0.83 0.2751
Py persistence spending shock 0.9795 0.9810
Y growth rate 1 1.0032
O4 Std. productivity shock 0.4247 0.5557
Op Std. risk premium shock 0.0131 0.1762
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Smets-Wouter Model

Lk
Ye=CyCe+ iyie+r ke +f

MY 1 c w>s** (o, — 1)(1 £l )
Cp = Cro1+ ———FECrpq + —— (L —
t 1 +)\/Y t—1 1 +)\/Y t“t+1 CSSO'C(]_ +)\/'Y) t 1t+1
1-M7y 1-Ay
— (i —EM1) — ————€¢
1+ M/v)o, (1+ M/y)o,
1 BBy~ 1

. i
i= qr + &

—— 1 + ——Eipyq + —
1+ ,87(1 %) 1+ By(l %) " 672(1 + By(l 0‘))
b

G =B(L—8)Y “E¢Qei1— e+ Eglipyy + (L— B(L— 8)Y T)Ereer — &t
e =0,(ak; + (L—a)l; + &)

S
ki =K1+ €t

1-¢
€t= I’t
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